| 注册
首页|期刊导航|广东工业大学学报|半监督遥感图像建筑物变化检测算法

半监督遥感图像建筑物变化检测算法

柴文光 罗崇熙

广东工业大学学报2025,Vol.42Issue(3):36-43,8.
广东工业大学学报2025,Vol.42Issue(3):36-43,8.DOI:10.12052/gdutxb.240045

半监督遥感图像建筑物变化检测算法

Semisupervised Remote Sensing Image Building Change Detection Algorithm

柴文光 1罗崇熙1

作者信息

  • 1. 广东工业大学 计算机学院,广东 广州 510006
  • 折叠

摘要

Abstract

Change detection in buildings holds significant importance in the fields of remote sensing image processing and pattern recognition.However,data annotation has always been a prominent challenge in the application of deep learning algorithms,especially in change detection scenarios.To address the data annotation challenges in deep learning-based change detection algorithms,this paper proposes an innovative semi-supervised learning method.This method employs a Siamese network that fuses bi-temporal features for feature extraction and constructs a teacher-student network framework for semi-supervised model training.To further enhance the accuracy of semi-supervised change detection,this paper introduces random perturbations in deep features to achieve consistency regularization.Additionally,on the level of image deep features,the paper proposes a method for forming decision boundaries by capturing differences in bi-temporal image features to distinguish changes in bi-temporal images.This method achieved Intersection over Union(IoU)scores of 83.04%and 85.57%on the Levir-CD and WHU Building datasets,respectively.Experimental results show that the proposed method can achieve performance levels close to fully supervised training with a limited amount of labeled data.

关键词

遥感图像/变化检测/一致性正则化/半监督学习

Key words

remote sensing images/change detection/consistency regularization/semi-supervised learning

分类

计算机与自动化

引用本文复制引用

柴文光,罗崇熙..半监督遥感图像建筑物变化检测算法[J].广东工业大学学报,2025,42(3):36-43,8.

基金项目

国家自然科学基金资助项目(61772143) (61772143)

广东省重点领域研发计划项目(2021B0101220006) (2021B0101220006)

广东工业大学学报

1007-7162

访问量0
|
下载量0
段落导航相关论文