| 注册
首页|期刊导航|广东工业大学学报|用于三维点云分割和分类的高分辨率特征网络

用于三维点云分割和分类的高分辨率特征网络

朱骏杰 刘东峰

广东工业大学学报2025,Vol.42Issue(3):44-51,8.
广东工业大学学报2025,Vol.42Issue(3):44-51,8.DOI:10.12052/gdutxb.240083

用于三维点云分割和分类的高分辨率特征网络

High-resolution Feature Network for 3D Point Cloud Segmentation and Classification

朱骏杰 1刘东峰1

作者信息

  • 1. 广东工业大学 信息工程学院,广东 广州 510006
  • 折叠

摘要

Abstract

Multi-scale features are critical in dense prediction tasks within the point cloud domain.Existing 3D point cloud processing techniques predominantly rely on encoder-decoder frameworks,which extract and integrate multiscale features via a backbone network.However,these methods often employ delayed fusion strategies,resulting in insufficient feature integration.To address this issue,this paper introduces a novel high-resolution feature network for 3D point cloud,named HRFN3D,specifically for point cloud classification and segmentation tasks.HRFN3D innovatively employs a relational learning module to perform feature fusion at an early stage,facilitating interactions between low-resolution high-semantic points and high-resolution low-semantic points.This early fusion ensures that high-resolution points retain semantic information from the outset,facilitating subsequent feature learning.In the later stage,the global feature vectors are generated by combining different pooling strategies and spliced with the original point features,preserving the details and enhancing the representation of the global features.The experimental results show that HRFN3D improves the Class mean and Instance mean Intersection over Union by 2.2 percentage point and 0.9 percentage point,respectively,and achieves the average class ratio of 86.3%.On the ModelNet40 data set,our proposed method achieves the highest class average accuracy of 91.5%with 4.3M parameters.These results validate the effectiveness of HRFN3D in multi-scale feature processing.

关键词

多尺度特征/三维点云处理/高分辨率/特征融合/早期阶段

Key words

multi-scale features/3D point cloud processing/high-resolution/feature fusion/early stage

分类

信息技术与安全科学

引用本文复制引用

朱骏杰,刘东峰..用于三维点云分割和分类的高分辨率特征网络[J].广东工业大学学报,2025,42(3):44-51,8.

基金项目

广东省自然科学基金资助项目(2024A1515012058) (2024A1515012058)

广东工业大学学报

1007-7162

访问量0
|
下载量0
段落导航相关论文