| 注册
首页|期刊导航|广东工业大学学报|针对忆阻神经网络加速器的混合粒度剪枝方法研究

针对忆阻神经网络加速器的混合粒度剪枝方法研究

周博 陈辉

广东工业大学学报2025,Vol.42Issue(3):123-129,7.
广东工业大学学报2025,Vol.42Issue(3):123-129,7.DOI:10.12052/gdutxb.240011

针对忆阻神经网络加速器的混合粒度剪枝方法研究

Research on Mixed-grained Pruning Method for Memristive Neural Network Accelerator

周博 1陈辉1

作者信息

  • 1. 广东工业大学 计算机学院,广东 广州 510006
  • 折叠

摘要

Abstract

Reducing redundant computations is a common method to accelerate neural networks and improve computational efficiency.The weight pruning is an effective model compression technique by removing redundant weights.However,most existing unstructured pruning methods do not consider the Resistive Random Access Memory(RRAM)crossbar structure of the memristors.On the contrary,the structured pruning methods fit well with the Memristive Crossbar Array(MCA)structure but may lead to a decrease in network accuracy due to the coarser pruning granularity.In this paper,we propose a mixed granularity pruning method that can effectively reduce the hardware overhead of the RRAM-based accelerators.The proposed method classifies the weight sub-matrix columns based on different levels of redundancy,and applies different pruning strategies for different columns,which makes full use of the redundancy of Convolutional Neural Networks(CNNs).Compared to existing methods,the proposed method achieves compression ratio and energy efficiency improvements of approximately 2.0×and 1.6×,respectively,with less accuracy loss.

关键词

神经网络/忆阻器/阻性随机存取存储器/模型剪枝

Key words

neural network/memristor/resistive random access memory/pruning

分类

信息技术与安全科学

引用本文复制引用

周博,陈辉..针对忆阻神经网络加速器的混合粒度剪枝方法研究[J].广东工业大学学报,2025,42(3):123-129,7.

基金项目

国家自然科学基金面上项目(62072118) (62072118)

广东工业大学学报

1007-7162

访问量0
|
下载量0
段落导航相关论文