吉林大学学报(理学版)2025,Vol.63Issue(3):675-684,10.DOI:10.13413/j.cnki.jdxblxb.2024313
一类具变指数对数非局部项及奇异势的伪抛物方程解的有限时刻爆破
Finite Blow-up of Solutions to a Class of Pseudo-parabolic Equations with Variable Exponential Logarithmic Nonlocal Terms and Singular Potentials
摘要
Abstract
Firstly,we used the potential well theory,the inverse Sobolev inequality,Fountain's theorem and other tools to discuss the blow-up problem of the solution to a class of pseudo-parabolic equations with variable exponential logarithmic nonlocal terms and singular potentials,and obtained the results of the solution of the problem to blow-up in finite time at arbitrarily high initial energy levels.Secondly,by combining the Gagliardo-Nirenberg interpolation inequality and Sobolev embedding method,and by constructing auxiliary functions,we gave the upper and lower bounds estimates for the blow-up time of the solutions to the problem under appropriate conditions.关键词
变指数/对数非局部项/伪抛物方程/爆破Key words
variable exponent/logarithmic nonlocal term/pseudo-parabolic equation/blow-up分类
数学引用本文复制引用
董琰,张帅,高云柱..一类具变指数对数非局部项及奇异势的伪抛物方程解的有限时刻爆破[J].吉林大学学报(理学版),2025,63(3):675-684,10.基金项目
吉林省科技发展计划项目(批准号:20230101282JC)和北华大学研究生创新计划项目(批准号:研创合字[2024]004号). (批准号:20230101282JC)