吉林大学学报(理学版)2025,Vol.63Issue(3):757-764,8.DOI:10.13413/j.cnki.jdxblxb.2024332
非齐度量测度空间上广义分数次积分算子交换子的有界性
Boundedness of Commutators of Generalized Fractional Integral Operators on Non-homogeneous Metric Measure Spaces
摘要
Abstract
By using the function decomposition and the inequality technique,with the aid of the theory of boundedness for generalized fractional integral operator commutators on the Lp spaces,the author discussed the boundedness of the commutator Tσ,b generated by the generalized fractional integral operator Tσ and the Lipschitz function b on non-homogeneous metric measure spaces.The results show that the Tσ,b is bounded from Morrey spaces Mp1q1(μ)to Mp2q2(μ),and also bounded from Morrey spaces Mpq(μ)to RBMO(μ)spaces.关键词
非齐度量测度空间/Morrey空间/广义分数次积分算子/交换子Key words
non-homogeneous metric measure space/Morrey space/generalized fractional integral operator/commutator分类
数理科学引用本文复制引用
吴翠兰..非齐度量测度空间上广义分数次积分算子交换子的有界性[J].吉林大学学报(理学版),2025,63(3):757-764,8.基金项目
国家自然科学基金面上项目(批准号:62173161). (批准号:62173161)