| 注册
首页|期刊导航|吉林大学学报(理学版)|改进SHO算法优化随机森林模型

改进SHO算法优化随机森林模型

付海涛 张智勇 王增辉 金晨磊

吉林大学学报(理学版)2025,Vol.63Issue(3):861-866,6.
吉林大学学报(理学版)2025,Vol.63Issue(3):861-866,6.DOI:10.13413/j.cnki.jdxblxb.2024003

改进SHO算法优化随机森林模型

Improve SHO Algorithm to Optimize Random Forest Model

付海涛 1张智勇 1王增辉 2金晨磊3

作者信息

  • 1. 吉林农业大学信息技术学院,长春 130118
  • 2. 长春人文学院理工学院,长春 130117
  • 3. 广东理工学院信息技术学院,广东肇庆 526000
  • 折叠

摘要

Abstract

Aiming at the problem of low-quality initial solutions and insufficient diversity,we proposed a random forest model that introduced the Logistic chaos mapping to improve the optimization of the sea horse optimization algorithm.Firstly,after improving the sea horse optimization algorithm,it was combined with the random forest algorithm to improve the discriminative accuracy of the classic random forest algorithm.Secondly,in order to verify the performance of new model,comparative experiment was conducted by using five models for four evaluation metrics.The experimental results show that the model has accuracy rate of 96.15%,precision of 100%,recall rate of 92.31%,and F1-Score of 96.00%,which improves the performance of the random forest method.

关键词

优化算法/海马优化算法/随机森林/分类算法/参数优化

Key words

optimization algorithm/sea horse optimization algorithm/random forest/classification algorithm/parameter optimization

分类

信息技术与安全科学

引用本文复制引用

付海涛,张智勇,王增辉,金晨磊..改进SHO算法优化随机森林模型[J].吉林大学学报(理学版),2025,63(3):861-866,6.

基金项目

吉林省教育厅科学技术研究项目(批准号:JJKH20250567KJ). (批准号:JJKH20250567KJ)

吉林大学学报(理学版)

OA北大核心

1671-5489

访问量0
|
下载量0
段落导航相关论文