| 注册
首页|期刊导航|红外技术|稀疏深度特征红外图像拼接算法

稀疏深度特征红外图像拼接算法

胡俊伟 王诗薇 杨默远

红外技术2025,Vol.47Issue(5):584-590,7.
红外技术2025,Vol.47Issue(5):584-590,7.

稀疏深度特征红外图像拼接算法

Sparse Depth Feature Infrared Image Stitching Algorithm

胡俊伟 1王诗薇 1杨默远1

作者信息

  • 1. 云南北方光电仪器有限公司,云南 昆明 650114
  • 折叠

摘要

Abstract

To solve the problems of limited infrared features and poor feature matching in the process of infrared image stitching,this paper proposes an algorithm called sparse depth feature infrared image stitching(SDFS).The algorithm first extracts a dense depth feature map using a convolutional neural network,then calculates and describes sparse feature points from the feature map to enhance the quality of feature point extraction.Next,the K-nearest neighbor search method is used to perform coarse matching of sparse feature points,followed by the application of a dynamic distance ratio strategy to refine the matching results and improve matching accuracy.Finally,based on the matching results,a homography matrix is calculated for image projection transformation,and adaptive factor-weighted fusion is used to achieve seamless fusion and splicing of the image.Experimental results show that the algorithm exhibits high robustness and can effectively adapt to infrared image stitching in different scenes.The stitching accuracy and display effect outperform commonly used stitching algorithms based on SIFT or SURF feature extraction.

关键词

红外图像拼接/稀疏特征/拼缝优化/特征匹配

Key words

infrared image stitching/sparse features/seam optimization/feature matching

分类

电子信息工程

引用本文复制引用

胡俊伟,王诗薇,杨默远..稀疏深度特征红外图像拼接算法[J].红外技术,2025,47(5):584-590,7.

基金项目

国防科技基础加强计划资助(2021-JCJQ-JJ-1020). (2021-JCJQ-JJ-1020)

红外技术

OA北大核心

1001-8891

访问量0
|
下载量0
段落导航相关论文