| 注册
首页|期刊导航|青岛大学学报(自然科学版)|基于可拓K-Mediods-PHM算法的轴承寿命预测模型

基于可拓K-Mediods-PHM算法的轴承寿命预测模型

赵奇 徐风远 陈云龙 张骞

青岛大学学报(自然科学版)2025,Vol.38Issue(2):56-61,6.
青岛大学学报(自然科学版)2025,Vol.38Issue(2):56-61,6.DOI:10.3969/j.issn.1006-1037.2025.02.09

基于可拓K-Mediods-PHM算法的轴承寿命预测模型

Bearing Life Prediction Model Based on Extensible K-Medoids-PHM Algorithm

赵奇 1徐风远 1陈云龙 1张骞2

作者信息

  • 1. 青岛大学机电工程学院,青岛 266071
  • 2. 青岛大学机电工程学院,青岛 266071||中车青岛四方机车车辆股份有限公司高速列车系统集成国家工程实验室,青岛 266111
  • 折叠

摘要

Abstract

In order to predict the life of train rolling bearings,a method was proposed that integrating wavelet packet decomposition,extension K-median clustering(K-Mediods)and proportional risk model(PHM).The condition monitoring and reliability data were combined to enhance the accuracy of bearing life prediction.By applying wavelet packet decomposition,eigenvalues from specific frequency bands were extracted to construct ef-fective feature datasets,which improved the K-Medoids algorithm's ability to characterize the degradation process of bearing performance,thereby correlating performance degrada-tion with remaining useful life more accurately.Consequently,the precision of the two-parameter proportional hazards model in predicting remaining bearing life was enhanced.The proposed method was validated using experimental data from the entire life cycle of rolling bearings,demonstrating that the consistency between the model output and target output exceeds 0.9.

关键词

比例风险模型/遗传算法/轴承寿命

Key words

proportional hazards model/genetic algorithm/dearing life

分类

机械制造

引用本文复制引用

赵奇,徐风远,陈云龙,张骞..基于可拓K-Mediods-PHM算法的轴承寿命预测模型[J].青岛大学学报(自然科学版),2025,38(2):56-61,6.

基金项目

山东省自然科学基金(批准号:ZR2019PEE011)资助. (批准号:ZR2019PEE011)

青岛大学学报(自然科学版)

1006-1037

访问量3
|
下载量0
段落导航相关论文