| 注册
首页|期刊导航|汽车工程学报|基于新型B&R-SSA算法的混合威布尔参数估计优化方法

基于新型B&R-SSA算法的混合威布尔参数估计优化方法

赵闵清 姜维 黄子龙 熊德明 龚春辉 程小强

汽车工程学报2025,Vol.15Issue(3):385-394,10.
汽车工程学报2025,Vol.15Issue(3):385-394,10.DOI:10.3969/j.issn.2095-1469.2025.03.11

基于新型B&R-SSA算法的混合威布尔参数估计优化方法

An Optimized Parameter Estimation Method for the Mixed Weibull Distribution Based on a Novel B&R-SSA Algorithm

赵闵清 1姜维 2黄子龙 2熊德明 3龚春辉 3程小强3

作者信息

  • 1. 西安工业大学机电工程学院,西安 710021||江铃汽车股份有限公司产品开发技术中心,南昌 330000
  • 2. 中国汽车工程研究院股份有限公司,重庆 401122||中汽院智能网联汽车检测中心(湖南)有限公司,长沙 410000
  • 3. 江铃汽车股份有限公司产品开发技术中心,南昌 330000
  • 折叠

摘要

Abstract

The mixed Weibull distribution is widely used for modeling failure distributions and predicting durability.In practical engineering development,accurate parameter estimation for the model is critically important.Therefore,improving the estimation accuracy of the mixed Weibull distribution has become an urgent and challenging issue in the field.Based on the original mixed Weibull distribution,this paper proposes an optimized parameter estimation approach using a novel B&R-SSA algorithm.Firstly,this method establishes an iterative optimization model to estimate the location,scale,and shape parameters based on the method of successive approximation.To address the low efficiency and tendency of the original Salp Swarm Algorithm(SSA)to become trapped in local optima,a novel B&R-SSA algorithm is proposed by introducing a"betrayal"behavior mechanism and an adaptive inertia weight strategy.This improved algorithm is then applied to solve the iterative model.Finally,Monte Carlo simulations and engineering case studies are conducted.Both the simulation and experimental results demonstrate that the proposed method achieves good accuracy and computational efficiency in estimating the parameters of the mixed Weibull distribution.

关键词

可靠性/混合威布尔分布/樽海鞘算法/参数估计/蒙特卡洛模拟

Key words

reliability/mixed weibull distribution/salp swarm algorithm/parameter estimation/Monte Carlo simulation

分类

数理科学

引用本文复制引用

赵闵清,姜维,黄子龙,熊德明,龚春辉,程小强..基于新型B&R-SSA算法的混合威布尔参数估计优化方法[J].汽车工程学报,2025,15(3):385-394,10.

基金项目

国家自然科学基金项目(12262022) (12262022)

陕西省科技重大专项(2019zdzx01-02-02) (2019zdzx01-02-02)

汽车工程学报

2095-1469

访问量0
|
下载量0
段落导航相关论文