| 注册
首页|期刊导航|水力发电|基于监测数据驱动的库区滑坡蠕变参数智能反演分析

基于监测数据驱动的库区滑坡蠕变参数智能反演分析

董志豪 黄海锋 字林 葛鹏 杨春旭 赵二峰 黎祎

水力发电2025,Vol.51Issue(6):31-38,8.
水力发电2025,Vol.51Issue(6):31-38,8.

基于监测数据驱动的库区滑坡蠕变参数智能反演分析

Intelligent Inversion of Creep Parameters of Landslide in Reservoir Area Driven by Monitoring Data

董志豪 1黄海锋 2字林 3葛鹏 2杨春旭 3赵二峰 1黎祎1

作者信息

  • 1. 河海大学水灾害防御全国重点实验室,江苏 南京 210024||河海大学水资源高效利用与工程安全国家工程研究中心,江苏 南京 210024
  • 2. 中国电建集团北京勘测设计研究院有限公司,北京 100024
  • 3. 华能澜沧江水电股份有限公司,云南 昆明 650214
  • 折叠

摘要

Abstract

Aiming at the inversion of mechanical parameters of the landslide in reservoir area,an intelligent inversion method of creep parameters combined with deformation trend component is proposed.Firstly,the deformation law and stability of landslide are analyzed through the geological data and the monitoring data.Then,combined with the variational modal decomposition(VMD),the trend component of landslide surface deformation is separated,and the constitutive equation considering landslide creep is determined and the proxy model of deformation trend component and creep parameters is established.Subsequently,the multi-strategy improved norher goshawk optimization(MSNGO)algorithm is used to invert the real creep parameters of the landslide.The analysis results of the landslide in a reservoir area show that the creep mechanical parameters of the landslide in reservoir area can be calculated more accurately through the MSNGO inversion after separating the trend variables.

关键词

库区滑坡/监测数据/参数反演/蠕变参数/改进北方苍鹰算法/变形趋势分量

Key words

landslide in reservoir area/monitoring data/parameter inversion/creep parameter/improved northern goshawk algorithm/deformation trend component

分类

水利科学

引用本文复制引用

董志豪,黄海锋,字林,葛鹏,杨春旭,赵二峰,黎祎..基于监测数据驱动的库区滑坡蠕变参数智能反演分析[J].水力发电,2025,51(6):31-38,8.

基金项目

国家自然科学基金资助项目(52079046) (52079046)

云南省水利水电工程安全重点实验室项目(202302AN360003) (202302AN360003)

水力发电

0559-9342

访问量0
|
下载量0
段落导航相关论文