| 注册
首页|期刊导航|三峡大学学报(自然科学版)|基于图像四叉树SBFEM和深度学习的缺陷反演模型

基于图像四叉树SBFEM和深度学习的缺陷反演模型

方涛 郑辉 赵文虎 唐森

三峡大学学报(自然科学版)2025,Vol.47Issue(4):45-52,8.
三峡大学学报(自然科学版)2025,Vol.47Issue(4):45-52,8.DOI:10.13393/j.cnki.issn.1672-948X.2025.04.007

基于图像四叉树SBFEM和深度学习的缺陷反演模型

Flaw Detection Model Based on Image Quadtree SBFEM and Deep Learning

方涛 1郑辉 2赵文虎 1唐森2

作者信息

  • 1. 南昌大学 工程建设学院,南昌 330031||智能系统与人机交互江西省重点实验室,南昌 330031
  • 2. 南昌大学 工程建设学院,南昌 330031
  • 折叠

摘要

Abstract

To quickly identify unknown internal structural flaws,a flaw detection model is proposed based on the image quadtree scaled boundary finite element method(SBFEM)and deep learning.The structural domain is meshed using the balanced quadtree algorithm with the recursive decomposition principle,and the mesh refinement processes are conducted automatically in the flaw boundary regions.The balanced quadtree mesh model is numerically analyzed using SBFEM,which ensures the solution accuracy and does not affect by hanging nodes.The model contains only six types of elements,resulting in a high degree of automation and significantly reducing the cost of the training dataset.A deep learning artificial neural network model for flaw detection is built using the extreme learning machine(ELM)as the learning rule,effectively avoiding the problem of the objective function getting trapped in local optima during model training.Statistical methods are used to analyze the accuracy of the inversion model,and the effects of flaw size and the number of training samples on the results are investigated.The results show that the predicted flaw parameters closely match the reserved clean data,and the model accurately quantifies the location and size of the flaws.

关键词

缺陷反演/深度学习/图像四叉树/比例边界有限元法

Key words

flaw detection/deep learning/image quadtree/scaled boundary finite element method

引用本文复制引用

方涛,郑辉,赵文虎,唐森..基于图像四叉树SBFEM和深度学习的缺陷反演模型[J].三峡大学学报(自然科学版),2025,47(4):45-52,8.

基金项目

国家自然科学基金项目(52109152) (52109152)

江西省自然科学基金项目(20242BAB25023,20232BAB214086) (20242BAB25023,20232BAB214086)

江西省大学生创新创业训练计划项目(S202310403051) (S202310403051)

三峡大学学报(自然科学版)

OA北大核心

1672-948X

访问量0
|
下载量0
段落导航相关论文