| 注册
首页|期刊导航|网络安全与数据治理|基于可解释LightGBM的电动汽车充电站入侵检测方法

基于可解释LightGBM的电动汽车充电站入侵检测方法

姚沁怡 龙莆均 陈世伦

网络安全与数据治理2025,Vol.44Issue(5):1-9,16,10.
网络安全与数据治理2025,Vol.44Issue(5):1-9,16,10.DOI:10.19358/j.issn.2097-1788.2025.05.001

基于可解释LightGBM的电动汽车充电站入侵检测方法

Intrusion detection method for electric vehicle charging station based on interpretable lightweight gradient boosting machine

姚沁怡 1龙莆均 1陈世伦1

作者信息

  • 1. 重庆科技大学 数理科学学院,重庆 401331
  • 折叠

摘要

Abstract

Against the backdrop of increasingly severe cybersecurity challenges in Electric Vehicle Charging Stations(EVCS),traditional intrusion detection methods exhibit multiple limitations,while machine learning and deep learning approaches,despite their effectiveness,suffer from"black-box"issues.This paper proposes an interpretable Lightweight Gradient Boosting Machine(LightGBM)-based intrusion detection framework for EVCS.The framework employs SHAP for feature selection and utilizes a Simulated Annealing Arithmetic Optimization Algorithm(SAOA)to optimize LightGBM hyperparameters,while integrating multi-ple Explainable Artificial Intelligence(XAI)techniques including SHAP,LOCO,CEM,PFI,LIME,and ALE.Experimental results on the CICEVSE2024 and Edge-IIoTset datasets demonstrate that the model achieves detection accuracies of 97.53%and 88.89%,with F1-scores of 98.01%and 88.98%respectively,while maintaining strong interpretability to provide clear decision-making basis for security operations.This research offers an efficient and interpretable solution for enhancing EVCS cybersecurity,with significant theoretical and practical implications.

关键词

电动汽车充电站/入侵检测/轻量级梯度提升机/可解释人工智能

Key words

electric vehicle charging stations/intrusion detection/LightGBM/XAI

分类

电子信息工程

引用本文复制引用

姚沁怡,龙莆均,陈世伦..基于可解释LightGBM的电动汽车充电站入侵检测方法[J].网络安全与数据治理,2025,44(5):1-9,16,10.

基金项目

重庆市教委科学技术研究项目(KJQN202101536) (KJQN202101536)

重庆科技大学硕士研究生创新计划项目(YKJCX2321110) (YKJCX2321110)

网络安全与数据治理

2097-1788

访问量0
|
下载量0
段落导航相关论文