| 注册
首页|期刊导航|信息与控制|考虑全状态约束和扰动的机械臂神经网络控制

考虑全状态约束和扰动的机械臂神经网络控制

艾文旭 姜勇 潘新安 王洪光

信息与控制2025,Vol.54Issue(2):276-287,298,13.
信息与控制2025,Vol.54Issue(2):276-287,298,13.DOI:10.13976/j.cnki.xk.2024.4095

考虑全状态约束和扰动的机械臂神经网络控制

Neural Network Control of Robotic Arm Considering Full-state Constraints and Disturbances

艾文旭 1姜勇 2潘新安 3王洪光3

作者信息

  • 1. 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁 沈阳 110016||中国科学院大学,北京 100049
  • 2. 江苏大学,江苏 镇江 212013
  • 3. 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁 沈阳 110016
  • 折叠

摘要

Abstract

To address the tracking control challenges of robotic arms faced with full state constraints,bounded unknown disturbances,and dynamic uncertainties,we propose an adaptive neural network control strategy that employs tangent-type barrier Lyapunov functions to manage full state con-straints and bounded disturbances.Time-varying constraints are applied to position errors,while static constraints handle velocity errors.A time-varying class PD term is introduced in the virtual control design to speed up system response.To address and suppress the bounded disturbances caused when the end of the robotic arm carries an object without fixing it well,an adaptive neural network is used.This approach effectively deals with system uncertainties,ensuring that the robot-ic arm satisfies predefined state constraints even under external disturbances and unknown dynamics.The Moore-Penrose inverse and Lyapunov stability theory are introduced to prove that the closed-loop system remains consistently bounded.Comparative simulation results demonstrate the method's advantages in achieving fast response speeds,small tracking errors,and strong ro-bustness to full-state constraints.Experimental results on a Franka Emika Panda robot validate the effectiveness of the proposed method.

关键词

障碍李雅普诺夫函数/全状态约束/有界扰动/自适应神经网络

Key words

barrier Lyapunov function/full-state constraint/bounded disturbance/adaptive neural network

分类

计算机与自动化

引用本文复制引用

艾文旭,姜勇,潘新安,王洪光..考虑全状态约束和扰动的机械臂神经网络控制[J].信息与控制,2025,54(2):276-287,298,13.

基金项目

国家自然科学基金项目(52075531,U20A20282) (52075531,U20A20282)

辽宁省国际科技合作计划(2023JH2/10700008) (2023JH2/10700008)

辽宁省应用基础研究计划(2022JH2/101300205) (2022JH2/101300205)

信息与控制

OA北大核心

1002-0411

访问量0
|
下载量0
段落导航相关论文