| 注册
首页|期刊导航|信息与控制|基于轻量模块化设计的水下图像增强方法

基于轻量模块化设计的水下图像增强方法

牛奔 李亿平 周天薇 高宏伟

信息与控制2025,Vol.54Issue(2):299-309,320,12.
信息与控制2025,Vol.54Issue(2):299-309,320,12.DOI:10.13976/j.cnki.xk.2024.4093

基于轻量模块化设计的水下图像增强方法

Underwater Image Enhancement Method Based on Lightweight Modular Design

牛奔 1李亿平 2周天薇 3高宏伟2

作者信息

  • 1. 沈阳理工大学自动化与电气工程学院,辽宁 沈阳 110159||深圳大学大湾区国际创新学院,广东 深圳 518060
  • 2. 沈阳理工大学自动化与电气工程学院,辽宁 沈阳 110159
  • 3. 深圳大学大湾区国际创新学院,广东 深圳 518060
  • 折叠

摘要

Abstract

Underwater imaging technology faces challenges such as reduced contrast and color shifts caused by light absorption and scattering in marine environments,Which is particularly evident in image dependent applications in marine and underwater environments.To overcome these challen-ges,we introduce a framework called a lightweight modular underwater network(LMUW-Net).This framework is designed to improve the visual quality and color fidelity of underwater images without significantly increasing network complexity.This framework first enhances the structural features of underwater images through basic feature extraction.It then employs advanced three-channel colors(red,green,and blue)enhancement and global sparse feature enhancement to ef-fectively extract global image information,enhancing contrast and brightness in degraded underwa-ter images.LMUW-Net significantly reduces computational complexity and memory usage through network structure optimization and parameter-sharing mechanisms,enabling real-time processing while significantly improving visual quality and color fidelity.Extensive experimental results across multiple publicly available underwater image datasets have shown that LMUW-Net,with only 9 000 trainable parameters,improves image quality indicators such as peak signal-to-noise ratio by 5%and structural similarity index by 3%compared to existing methods.This highlights its significant advantages in enhancing underwater image visual quality and computational efficiency.Overall,LMUW-Net provides a robust solution for underwater image processing,especially suitable for ap-plications requiring real-time processing by improving image clarity.

关键词

图像增强/深度学习/轻量化网络

Key words

image enhancement/deep learning/lightweight network

分类

信息技术与安全科学

引用本文复制引用

牛奔,李亿平,周天薇,高宏伟..基于轻量模块化设计的水下图像增强方法[J].信息与控制,2025,54(2):299-309,320,12.

基金项目

国家自然科学基金项目(72334004,62103286,71971143) (72334004,62103286,71971143)

广东省自然科学基金项目(2024A1515030278,2024A1515011712,2025A1515012829) (2024A1515030278,2024A1515011712,2025A1515012829)

广东省哲学社会科学十四五规划项目(GD22CGL35) (GD22CGL35)

广东省普通高校重点领域专项(2022ZDZX2054) (2022ZDZX2054)

广东省创新团队资助项目(2021WCXTD002) (2021WCXTD002)

深圳市自然科学基金面上项目(JCYJ20240813141612017) (JCYJ20240813141612017)

信息与控制

OA北大核心

1002-0411

访问量0
|
下载量0
段落导航相关论文