| 注册
首页|期刊导航|物探化探计算技术|基于CL-Trans模型的测井储层参数预测方法

基于CL-Trans模型的测井储层参数预测方法

胡睿 李勇 刘应天 冯文

物探化探计算技术2025,Vol.47Issue(3):410-419,10.
物探化探计算技术2025,Vol.47Issue(3):410-419,10.DOI:10.12474/wthtjs.20240318-0001

基于CL-Trans模型的测井储层参数预测方法

Prediction method for reservoir parameters based on CL-Trans network

胡睿 1李勇 1刘应天 1冯文1

作者信息

  • 1. 成都理工大学地球物理学院,成都 610059
  • 折叠

摘要

Abstract

Effective reservoir parameters are important for characterization and evaluation.Traditional methods based on core measurements or petrophysical modeling are either expensive or inefficient,and existing methods based on recurrent neural networks cannot sufficiently capture the global dependencies in the sequences.In this paper,a reliable,low-cost method for reservoir parameter prediction that is sensitive to the global features of logging data is established from actual logging data.The technique is a hybrid deep learning model based on CNN,LSTM,and Transformer encoder,called CL-Trans network.The CL-Trans network firstly uses one-dimensional convolutional layers to mine potential primary features from logging data,then utilizes multiple LSTM layers to establish nonlinear relationships between logging data and reservoir parameters,and finally applies it to a Transformer encoder with a self-attention mechanism to further extract global features from logging data.We used this network to a region of logging data,and predicted porosity and permeability,showing more accurate and stable reservoir parameter prediction results when compared with Random Forest,LSTM,and CNN-LSTM network.

关键词

机器学习/Transformer编码器/地球物理测井/储层参数预测

Key words

machine learning/transformer encoder/Geophysical logging/prediction of reservoir parameters

分类

地球科学

引用本文复制引用

胡睿,李勇,刘应天,冯文..基于CL-Trans模型的测井储层参数预测方法[J].物探化探计算技术,2025,47(3):410-419,10.

物探化探计算技术

1001-1749

访问量0
|
下载量0
段落导航相关论文