| 注册
首页|期刊导航|现代电子技术|基于深度学习的拒止环境下无人机自主定位方法

基于深度学习的拒止环境下无人机自主定位方法

姚雨雯 郑恩辉 孙澄 杨健行 高翔

现代电子技术2025,Vol.48Issue(11):1-7,7.
现代电子技术2025,Vol.48Issue(11):1-7,7.DOI:10.16652/j.issn.1004-373x.2025.11.001

基于深度学习的拒止环境下无人机自主定位方法

Deep learning based autonomous localization method for unmanned aerial vehicles in denial environments

姚雨雯 1郑恩辉 1孙澄 1杨健行 1高翔1

作者信息

  • 1. 中国计量大学 机电工程学院,浙江 杭州 310018
  • 折叠

摘要

Abstract

UAVs(unmanned aerial vehicles)rely on satellite systems for positioning.When satellite signals are covered or interfered with,the positioning of UAVs may be affected,which in turn leads to the inability to fly normally.Vision-based techniques can realize UAV localization by image matching methods,but the heterogeneous source images are so different that the existing feature matching methods fail to meet the requirements in terms of robustness and real-time performance.Therefore,a method named FCN-FPI(FocalNet-find point image),which integrates geographical positioning,is proposed.In the method,the Transformer-based FocalNet network is taken as the backbone network for multi-scale feature extraction first,and then a CLMF(cross-level multi-feature)fusion module is designed for fusing spatial semantic information of feature maps with different scales.Finally,the loss function is improved and a Gaussian window loss is proposed,so that different regions of the detection point are given corresponding weights according to their importance,which guides the model to pay more attention to the center region and improves the geolocation performance.The off-line experiments on the dense dataset UL14 show that the positioning performance on the meter-level index MA@20 is improved from 67.28%to 69.58%,and the relative distance score(RDS)is improved from 65.33%to 69.74%,so the proposed method has a certain engineering value.

关键词

无人机/拒止环境/图像匹配/Transformer/特征融合/地理定位

Key words

UAV/denial environment/image matching/Transformer/feature fusion/geographical positioning

分类

电子信息工程

引用本文复制引用

姚雨雯,郑恩辉,孙澄,杨健行,高翔..基于深度学习的拒止环境下无人机自主定位方法[J].现代电子技术,2025,48(11):1-7,7.

基金项目

浙江省教育厅科研项目(Y202353673)资助 (Y202353673)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文