| 注册
首页|期刊导航|现代电子技术|PCASort:融合粒子滤波和注意力机制的鱼类跟踪算法

PCASort:融合粒子滤波和注意力机制的鱼类跟踪算法

谭华超 袁贵鸿 江彦博 毕海 程远 刘丹

现代电子技术2025,Vol.48Issue(11):151-155,5.
现代电子技术2025,Vol.48Issue(11):151-155,5.DOI:10.16652/j.issn.1004-373x.2025.11.023

PCASort:融合粒子滤波和注意力机制的鱼类跟踪算法

PCASort:Fish tracking algorithm incorporating particle filtering and attention mechanism

谭华超 1袁贵鸿 1江彦博 1毕海 2程远 3刘丹1

作者信息

  • 1. 大连海洋大学 信息工程学院,辽宁 大连 116023
  • 2. 杭州云栖智慧视通科技有限公司,辽宁 大连 116000
  • 3. 大连理工大学 宁波研究院,浙江 宁波 315000
  • 折叠

摘要

Abstract

In fish multiple object tracking,the feature differences among individuals are not obvious due to the fact that most of the fish have similar appearance within the fish class,which leads to low accuracy and poor robustness of fish tracking algorithms based on appearance features for data association.In view of the above,a DeepSort-based improved multiple object tracking algorithm for fish is proposed.The algorithm is named as PCASort.The movement trajectories of fish may exhibit nonlinear characteristics due to external perturbations,so the original Kalman filtering method is replaced with particle filtering applicable to nonlinear and non-Gaussian problems,so as to improve the accuracy of trajectory prediction.An improved coordinate attention mechanism is added to the original feature extraction network,and the location information is embedded into the generated feature vectors used to compute the minimum cosine distance,so as to improve the accuracy rate of data association.The experimental results show that the accuracy of IDF1 and multiple object tracking accuracy(MOTA)on open-source video dataset is 63.4%and 96.9%,respectively,and the number of ID switches is 31 times.

关键词

鱼类跟踪/多目标追踪/粒子滤波/注意力机制/最小余弦距离/交并比

Key words

fish tracking/multiple object tracking/particle filtering/attention mechanism/minimum cosine distance/intersection over union

分类

电子信息工程

引用本文复制引用

谭华超,袁贵鸿,江彦博,毕海,程远,刘丹..PCASort:融合粒子滤波和注意力机制的鱼类跟踪算法[J].现代电子技术,2025,48(11):151-155,5.

现代电子技术

OA北大核心

1004-373X

访问量2
|
下载量0
段落导航相关论文