| 注册
首页|期刊导航|空军军医大学学报|基于支持向量机算法的部队官兵心理健康分类研究

基于支持向量机算法的部队官兵心理健康分类研究

张利利 惠铎铎 党维涛

空军军医大学学报2025,Vol.46Issue(5):630-632,638,4.
空军军医大学学报2025,Vol.46Issue(5):630-632,638,4.DOI:10.13276/j.issn.2097-1656.2025.05.011

基于支持向量机算法的部队官兵心理健康分类研究

Research on the classification of mental health of officers and soldiers based on support vector machine algorithm

张利利 1惠铎铎 1党维涛1

作者信息

  • 1. 空军军医大学航空航天医学系航空航天医学装备教研室,陕西西安 710032
  • 折叠

摘要

Abstract

Objective To train the sample features by using support vector machine(SVM)algorithm,and to use machine learning for mental health status,so as to realize automatic classification and recognition.Methods Firstly,undersampling method was used to solve the problem of sample imbalance,then normalization method was used to control the scores of all indicators in an interval,and samples were trained by selecting different kernel functions of SVM.Finally,hyperparameters were tuned by grid search to obtain the best parameter combination,and the samples were tested again to obtain the evaluation report of the model.Results The results showed that the accuracy,recall and F1-Score of the algorithm based on Sigmoid and RBF kernel functions were improved after grid search parameter tuning.Conclusion This paper provides an idea for the intelligent assessment of psychological risk,which can be applied to other scenarios with a little modification.

关键词

支持向量机/归一化/网格搜索/心理测试

Key words

support vector machine/normalization/grid search/psychological test

分类

计算机与自动化

引用本文复制引用

张利利,惠铎铎,党维涛..基于支持向量机算法的部队官兵心理健康分类研究[J].空军军医大学学报,2025,46(5):630-632,638,4.

基金项目

陕西省重点研发项目(2022SF-137,2023-YBSF-509) (2022SF-137,2023-YBSF-509)

空军军医大学学报

2097-1656

访问量5
|
下载量0
段落导航相关论文