| 注册
首页|期刊导航|心理科学进展|融合机器学习技术的阈下抑郁神经生理机制及干预

融合机器学习技术的阈下抑郁神经生理机制及干预

刘永进 杨雪 杜欣欣 嵇文麒 臧寅垠 官锐园 宋森 钱铭怡 牟文婷

心理科学进展2025,Vol.33Issue(6):887-904,18.
心理科学进展2025,Vol.33Issue(6):887-904,18.DOI:10.3724/SP.J.1042.2025.0887

融合机器学习技术的阈下抑郁神经生理机制及干预

Neurophysiological mechanisms and interventions of subthreshold depression by integrating machine learning techniques

刘永进 1杨雪 1杜欣欣 1嵇文麒 1臧寅垠 2官锐园 3宋森 4钱铭怡 2牟文婷5

作者信息

  • 1. 清华大学计算机科学与技术系,北京 100084
  • 2. 北京大学心理与认知科学学院,北京 100871
  • 3. 北京大学医学人文学院医学心理学系,北京 100191
  • 4. 清华大学脑与智能实验室
  • 5. 清华大学心理与认知科学系,北京 100084
  • 折叠

摘要

Abstract

Major Depressive Disorder(MDD)poses a substantial threat to national mental health.Subthreshold depression,serving as a crucial prodromal stage of MDD,is of great value for investigating the neurophysiological features and its dynamic developmental patterns,as well as their potential for improving prediction of MDD onset.Past research is limited in treating MDD as a static,singular diagnostic entity.The current research,grounded in complex dynamic systems theory,explores multi-temporal and multi-modal machine learning techniques to explore the intricate relationships between subthreshold depressive symptoms and neurophysiological characteristics,as well as to identify key predictive factors.Additionally,through longitudinal tracking and neurodynamic network modeling,the study investigates attractor states and their predictive capacity for subsequent MDD onset and characteristic transitions.Additionally,the current study explores the preventive efficacy of cognitive behavioral therapy for subthreshold depression and the predictive role of attractor states.The research aims to clarify the neurophysiological features and its dynamic developmental patterns of subthreshold depression,hoping to inform the development of effective earlv screening and selective prevention strategies of MDD.

关键词

阈下抑郁/吸引子状态/认知行为疗法/预防性干预/多模态机器学习

Key words

subthreshold depression/attractors/cognitive-behavioral therapy/preventive intervention/multi-modal machine learning

分类

医药卫生

引用本文复制引用

刘永进,杨雪,杜欣欣,嵇文麒,臧寅垠,官锐园,宋森,钱铭怡,牟文婷..融合机器学习技术的阈下抑郁神经生理机制及干预[J].心理科学进展,2025,33(6):887-904,18.

基金项目

国家自然科学基金(批准号:U2336214)资助. (批准号:U2336214)

心理科学进展

OA北大核心

1671-3710

访问量0
|
下载量0
段落导航相关论文