| 注册
首页|期刊导航|智能化农业装备学报(中英文)|基于改进VGG-16的烟叶成熟度识别

基于改进VGG-16的烟叶成熟度识别

肖孟宇 马云明 肖亦雄 陆峰 唐忠海 李跑 范伟 肖航

智能化农业装备学报(中英文)2025,Vol.6Issue(2):79-87,9.
智能化农业装备学报(中英文)2025,Vol.6Issue(2):79-87,9.DOI:10.12398/j.issn.2096-7217.2025.02.007

基于改进VGG-16的烟叶成熟度识别

Fresh tobacco maturity recognition based on the improved VGG-16 model

肖孟宇 1马云明 1肖亦雄 1陆峰 2唐忠海 3李跑 4范伟 3肖航5

作者信息

  • 1. 湖南省烟草公司衡阳市公司,湖南 衡阳,421000
  • 2. 湖北中烟工业有限责任公司,湖北 武汉,430040
  • 3. 湖南农业大学食品科学技术学院,湖南 长沙,410128
  • 4. 湖南农业大学食品科学技术学院,湖南 长沙,410128||食品科学与生物技术湖南省重点实验室,湖南 长沙,410128
  • 5. 麻省大学阿莫斯特分校食品科学系,美国马萨诸塞州阿莫斯特,01003
  • 折叠

摘要

Abstract

To improve the accuracy of identifying the maturity of tobacco leaves at different harvesting stages,this study systematically collected images of under-ripe,ripe,and over-ripe tobacco leaves from the upper,middle,and lower parts of the plant.We proposed an improved VGG-16-based deep learning method for tobacco leaf maturity recognition.This method leverages a pre-trained VGG-16 model as its foundation,incorporating transfer learning,fine-tuning,and convolutional layer feature fusion to enhance the model's performance in tobacco leaf maturity recognition tasks.Freezing the convolutional and subsequent layers,adding BN layers,and using the Adam optimizer further improved training efficiency,avoided over fitting,and enhanced the model's robustness and accuracy.Experimental results showed that the improved VGG-16 model had a high accuracy advantage in tobacco leaf maturity recognition tasks,with a test set accuracy of 99.7%,surpassing classical machine learning methods such as BP neural networks,support vector machines,original VGG-16 and VGG-19,AlexNet,and ResNet50.The model comprised 14 721 353 parameters,a model size of 58.9 M,and a single image recognition time of 0.024 9 seconds,demonstrating the advantages of low computational and storage resource requirements and rapid recognition speed.Further visual analysis of the recognition results of tobacco leaf images with different maturities using the Score-CAM algorithm revealed that the central region of the main vein of tobacco leaves served as a primary differentiating feature for tobacco leaves with different maturities across different stalk positions,providing key information for the recognition model,there by clarifying the chemical substance transformation patterns occurring during the maturity process of tobacco leaves from distinct plant sections.The improved VGG-16 deep learning model proposed in this study exhibits high accuracy and efficiency in identifying the maturity of tobacco leaves at different harvesting stages.It is poised to provide precise and effective decision support for tobacco harvesting and production.Future research will focus on exploring alternative feature fusion strategies and network structures to further improve the generalization ability and robustness of tobacco leaf maturity recognition across different production areas and years.

关键词

烟叶成熟度/深度学习/改进VGG-16/迁移学习/图像分类

Key words

tobacco maturity/deep learning/improved VGG-16/transfer learning/image classification

分类

农业科技

引用本文复制引用

肖孟宇,马云明,肖亦雄,陆峰,唐忠海,李跑,范伟,肖航..基于改进VGG-16的烟叶成熟度识别[J].智能化农业装备学报(中英文),2025,6(2):79-87,9.

基金项目

国家自然科学基金项目(32360579) (32360579)

湖南省教育厅重点项目(20A230) (20A230)

湖南省烟草公司衡阳市公司科技项目(2021430481240017) National Natural Science Foundation of China(32360579) (2021430481240017)

Key Scientific Research Project of Hunan Provincial Department of Education(20A230) (20A230)

Science and Technology Project of Hunan Tobacco Company Hengyang Branch(2021430481240017) (2021430481240017)

智能化农业装备学报(中英文)

2096-7217

访问量0
|
下载量0
段落导航相关论文