| 注册
首页|期刊导航|郑州大学学报(理学版)|基于深度强化学习的无人机博弈路径规划

基于深度强化学习的无人机博弈路径规划

薛均晓 张世文 陆亚飞 严笑然 付玮

郑州大学学报(理学版)2025,Vol.57Issue(4):8-14,7.
郑州大学学报(理学版)2025,Vol.57Issue(4):8-14,7.DOI:10.13705/j.issn.1671-6841.2024033

基于深度强化学习的无人机博弈路径规划

UAV Game Path Planning Based on Deep Reinforcement Learning

薛均晓 1张世文 2陆亚飞 3严笑然 3付玮4

作者信息

  • 1. 郑州大学网络空间安全学院 河南 郑州 450002||之江实验室 人工智能研究院 浙江 杭州 311100
  • 2. 郑州大学网络空间安全学院 河南 郑州 450002
  • 3. 之江实验室 人工智能研究院 浙江 杭州 311100
  • 4. 之江实验室天基计算研究中心 浙江 杭州 311100
  • 折叠

摘要

Abstract

A deep reinforcement learning model driven by knowledge and data was proposed to address the low learning efficiency of deep reinforcement learning methods in complex environments for unmanned aerial vehicle(UAV)game tasks.Firstly,drawing on the idea of imitation learning,a genetic algorithm was employed as a heuristic search strategy,and expert experience knowledge was collected.Secondly,the UAV interacted with the environment through deep reinforcement learning and collected online experi-ence data.Finally,a deep reinforcement learning model driven by knowledge and data was constructed to optimize UAV game strategies.Experimental results indicated that the proposed model effectively im-proved the convergence speed and learning stability,and the trained agents demonstrated better autono-mous game path planning capabilities.

关键词

深度强化学习/无人机博弈/路径规划/遗传算法

Key words

deep reinforcement learning/UAV game/path planning/genetic algorithm

引用本文复制引用

薛均晓,张世文,陆亚飞,严笑然,付玮..基于深度强化学习的无人机博弈路径规划[J].郑州大学学报(理学版),2025,57(4):8-14,7.

基金项目

国家重点研发计划项目(2022YFC3004400) (2022YFC3004400)

郑州大学学报(理学版)

OA北大核心

1671-6841

访问量0
|
下载量0
段落导航相关论文