| 注册
首页|期刊导航|郑州大学学报(理学版)|基于联盟链的隐私保护联邦学习框架

基于联盟链的隐私保护联邦学习框架

韦超 杨闻韶 刘炜

郑州大学学报(理学版)2025,Vol.57Issue(4):23-29,7.
郑州大学学报(理学版)2025,Vol.57Issue(4):23-29,7.DOI:10.13705/j.issn.1671-6841.2024036

基于联盟链的隐私保护联邦学习框架

A Privacy-preserving Federated Learning Framework Based on Consortium Chain

韦超 1杨闻韶 1刘炜2

作者信息

  • 1. 燕山大学 理学院 河北秦皇岛 066004
  • 2. 郑州大学网络空间安全学院 河南 郑州 450002
  • 折叠

摘要

Abstract

Aiming at the shortcomings of existing federated learning models in privacy protection and poi-soning attack defense,a privacy-preserving federated learning framework based on consortium chain was proposed.Firstly,the framework employed homomorphic encryption techniques and Laplacian noise to ensure data privacy,effectively preserving the confidentiality of data from various parties during model training.Secondly,through the consensus protocol of the consortium chain and a model aggregation algo-rithm,distinct gradient aggregation weights were assigned to different participants,mitigating the impact of malicious parties on model aggregation and enhancing the robustness of the model.The experimental results conducted on the MNIST and Fashion-MNIST datasets demonstrated that even with a malicious participant ratio up to 40%,the proposed framework could still maintain high model accuracy with label reversal attack and backdoor attack.

关键词

联邦学习/隐私保护/投毒攻击/联盟链/模型聚合

Key words

federated learning/privacy protection/poisoning attack/consortium chain/model aggrega-tion

分类

计算机与自动化

引用本文复制引用

韦超,杨闻韶,刘炜..基于联盟链的隐私保护联邦学习框架[J].郑州大学学报(理学版),2025,57(4):23-29,7.

基金项目

燕山大学博士基金项目(8190047) (8190047)

郑州大学学报(理学版)

OA北大核心

1671-6841

访问量0
|
下载量0
段落导航相关论文