| 注册
首页|期刊导航|郑州大学学报(理学版)|基于变分自编码器的交通流预测算法

基于变分自编码器的交通流预测算法

崔文源 滕飞 贺百胜 胡晓鹏 仇戈

郑州大学学报(理学版)2025,Vol.57Issue(4):40-46,87,8.
郑州大学学报(理学版)2025,Vol.57Issue(4):40-46,87,8.DOI:10.13705/j.issn.1671-6841.2023166

基于变分自编码器的交通流预测算法

The Traffic Flow Prediction Algorithm Based on Variational Autoencoder

崔文源 1滕飞 1贺百胜 1胡晓鹏 1仇戈2

作者信息

  • 1. 西南交通大学计算机与人工智能学院 四川成都 611756
  • 2. 四川港投川南临港产业投资(集团)有限公司 四川成都 644004
  • 折叠

摘要

Abstract

In order to solve the problem that the existing traffic flow prediction models could not fully mine the spatio-temporal dependence of complex and dynamic traffic flow data,a traffic flow prediction model based on variational autoencoder(AST-VAE)was proposed.Firstly,the variational inference and residual decomposition mechanism were used to separate the traffic flow signal into hidden diffusion sig-nal,intrinsic signal and random signal.The temporal and spatial correlations in the three signals were then extracted using different learning modules.Finally,the three multi-dimensional features were fused to capture the global spatio-temporal dependence.With two real traffic datasets,the effectiveness and feasibility of the specific modules of the model were analyzed,and the experimental results showed that AST-VAE was always better than the existing models in the traffic flow prediction task,and the error was low,and it had good prediction performance.

关键词

交通流预测/变分自编码器/时空依赖

Key words

traffic flow prediction/variational autoencoder/spatio-temporal dependence

分类

计算机与自动化

引用本文复制引用

崔文源,滕飞,贺百胜,胡晓鹏,仇戈..基于变分自编码器的交通流预测算法[J].郑州大学学报(理学版),2025,57(4):40-46,87,8.

基金项目

四川省科技计划资助项目(2022YFG0028) (2022YFG0028)

郑州大学学报(理学版)

OA北大核心

1671-6841

访问量0
|
下载量0
段落导航相关论文