| 注册
首页|期刊导航|重庆大学学报|结合博弈论与强化学习的态势感知与路径预测

结合博弈论与强化学习的态势感知与路径预测

杨云 梁花 魏兴慎 李洋 刘俊

重庆大学学报2025,Vol.48Issue(6):84-97,14.
重庆大学学报2025,Vol.48Issue(6):84-97,14.DOI:10.11835/j.issn.1000-582X.2025.06.008

结合博弈论与强化学习的态势感知与路径预测

Situational awareness and path prediction combining game theory and reinforcement learning

杨云 1梁花 2魏兴慎 3李洋 2刘俊4

作者信息

  • 1. 国网重庆市电力公司 重庆 400014
  • 2. 国网重庆电力公司电力科学研究院 重庆 401123
  • 3. 国网电力科学研究院有限公司 南京 211106||南瑞集团有限公司 南京南瑞信息通信科技有限公司 南京 211106
  • 4. 重庆邮电大学 软件工程学院 重庆 400000
  • 折叠

摘要

Abstract

Cybersecurity situational awareness technology plays a critical role in assessing network security status,predicting potential attack paths,and assisting administrators in implementing effective defenses.Traditional methods for network situation assessment mostly rely on theoretical analysis,limiting their practicality in real-world networks.Additionally,the complexity of sensor-collected data often results in excessive storage demands.To address these challenges,this paper proposes a dynamic network attack-defense perception model that integrates reinforcement learning and game theory to enhance situational awareness and predict potential attack paths.The approach begins with the design of a hierarchical analytic process using a priority relation matrix to calculate system losses and assess security posture.Next,the Boltzmann probability distribution is employed to calculate the mixed-strategy Nash equilibrium,identifying optimal strategic responses.Finally,an improved Q-learning algorithm,in combination with game-theoretic principles,is used to dynamically model network state transitions,enabling accurate prediction of attack paths and supporting defenders in selecting optimal defense strategies.Simulation results validate the model's effectiveness and practicality in complex network environments.

关键词

强化学习/Q-learning/博弈论/态势感知/层次分析法/纳什均衡

Key words

reinforcement learning/Q-learning/game model/situational awareness/analytic hierarchy process/Nash equilibrium

分类

信息技术与安全科学

引用本文复制引用

杨云,梁花,魏兴慎,李洋,刘俊..结合博弈论与强化学习的态势感知与路径预测[J].重庆大学学报,2025,48(6):84-97,14.

基金项目

重庆市电力公司科技项目(520626190067).Supported by Science and Technology Projects of State Grid Chongqing Electric Power Company(520626190067). (520626190067)

重庆大学学报

OA北大核心

1000-582X

访问量0
|
下载量0
段落导航相关论文