| 注册
首页|期刊导航|重庆大学学报|基于非线性深度子空间学习的微表情识别方法研究

基于非线性深度子空间学习的微表情识别方法研究

冉光伟 何祺 王楠 冯为嘉 姜立标

重庆大学学报2025,Vol.48Issue(6):98-111,14.
重庆大学学报2025,Vol.48Issue(6):98-111,14.DOI:10.11835/j.issn.1000-582X.2025.06.009

基于非线性深度子空间学习的微表情识别方法研究

Micro-expression recognition based on nonlinear deep subspace learning

冉光伟 1何祺 2王楠 3冯为嘉 3姜立标4

作者信息

  • 1. 星河智联汽车科技有限公司,广州 510335
  • 2. 广汽丰田汽车有限公司,广州 511455
  • 3. 天津师范大学计算机与信息工程学院,天津 300382
  • 4. 华南理工大学 机械与汽车工程学院,广州 510641||广州城市理工学院机械工程学院与机器人工程学院,广州 510850
  • 折叠

摘要

Abstract

To address the issues of poor robustness and weak generalisation in deep subspace network-based micro-expression recognition,this paper proposes a novel method that integrates nonlinear deep subspace learning with optical flow computation.The method employs kernel transformation to comprehensively extract emotional features from micro-expressions while simultaneously utilizing optical flow characteristcs to capture subtle motion dynamics,thereby enhancing recognition robustness.Experimental validation is performed on 4 widely adopted spontaneous micro-expression datasets(SMIC,SAMM,CASME and CASME Ⅱ)as well as a composite dataset 3DB-combined samples.Results demonstrate that the proposed method outperforms existing deep learning algorithms,including MACNN and Micro-Attention,achieving a recognition accuracy of 0.834 6 on the composite dataset.Furthermore,after adding 10%,20%,30%,and 40%random noise blocks to the SMIC dataset,the method consistently maintains superior unweighted F1 scores compared to other algorithms.These findings substantiate its effectiveness and robustness in real-world micro-expression recognition scenarios.

关键词

深度子空间/微表情识别/光流特征/主成分分析

Key words

deep subspace/micro-expression recognition/optical flow features/principal component analysis

分类

计算机与自动化

引用本文复制引用

冉光伟,何祺,王楠,冯为嘉,姜立标..基于非线性深度子空间学习的微表情识别方法研究[J].重庆大学学报,2025,48(6):98-111,14.

基金项目

国家自然科学基金资助项目(61602345,62002263).Supported by National Natural Science Foundation of China(61602345,62002263). (61602345,62002263)

重庆大学学报

OA北大核心

1000-582X

访问量0
|
下载量0
段落导航相关论文