| 注册
首页|期刊导航|重庆大学学报|基于SVM算法的跌倒预测及保护系统研究

基于SVM算法的跌倒预测及保护系统研究

彭磊 曹治东 晁瑞 李小虎 胡建华 李新超

重庆大学学报2025,Vol.48Issue(6):112-122,11.
重庆大学学报2025,Vol.48Issue(6):112-122,11.DOI:10.11835/j.issn.1000-582X.2025.06.010

基于SVM算法的跌倒预测及保护系统研究

Research on fall prediction and protection system based on SVM

彭磊 1曹治东 1晁瑞 1李小虎 2胡建华 1李新超2

作者信息

  • 1. 重庆大学 附属中心医院,重庆 400044
  • 2. 重庆大学 大数据与软件学院,重庆 400044
  • 折叠

摘要

Abstract

Real-time fall prediction and protection systems can significantly reduce fall-related injury risks while enhancing independence,physical well-being,and mental health of elderly individuals living alone.To improve fall prediction algorithm performance,specifically recognition accuracy,recall rate,and specificity,while minimizing both fall misclassification errors and airbag deployment time,this study proposes a multi-threshold fall prediction algorithm based on support vector machines(SVM),integrated with an airbag protection system.Motion data are first collected through a waist-worn acceleration sensor.Then,the SVM algorithm determines optimal thresholds for acceleration,velocity,and posture angle to differentiate falls from activities of daily living(ADLs).Finally,the optimized algorithm is deployed on a microcontroller to enable real-time fall prediction and trigger the airbag system.Experimental results show that the system achieves 97.3%accuracy,99%recall and 96.1%specificity in fall recognition,with an average airbag inflation time of 350.4 ms.These metrics confirm both high prediction reliability and rapid protective response,validating the system's effectiveness for real-time fall prediction and protection.

关键词

支持向量机/分裂法/跌倒预测/跌倒保护系统

Key words

SVM/splitting technique/fall prediction/fall protection system

分类

计算机与自动化

引用本文复制引用

彭磊,曹治东,晁瑞,李小虎,胡建华,李新超..基于SVM算法的跌倒预测及保护系统研究[J].重庆大学学报,2025,48(6):112-122,11.

基金项目

重庆市科卫联合项目(2020MSXM111,2023MSXM023) (2020MSXM111,2023MSXM023)

中央高校基本科研业务费医工融合项(2021CDJYGRH011).Supported by Science and Health Joint Project of Chongqing(2020MSXM111,2023MSXM023),Central Universities Project in China(2021CDJYGRH011). (2021CDJYGRH011)

重庆大学学报

OA北大核心

1000-582X

访问量0
|
下载量0
段落导航相关论文