| 注册
首页|期刊导航|广东电力|基于改进AP聚类和双重注意力机制的区域级新能源超短期出力预测方法

基于改进AP聚类和双重注意力机制的区域级新能源超短期出力预测方法

苏华英 林晨 张俨 王融融 程春田 张俊涛

广东电力2025,Vol.38Issue(3):8-17,10.
广东电力2025,Vol.38Issue(3):8-17,10.DOI:10.3969/j.issn.1007-290X.2025.03.002

基于改进AP聚类和双重注意力机制的区域级新能源超短期出力预测方法

Regional-level New Energy Ultra-short-term Output Prediction Method for New Energy Sources Based on Improved AP Clustering and Dual-attention Mechanism

苏华英 1林晨 2张俨 1王融融 1程春田 2张俊涛2

作者信息

  • 1. 贵州电网公司电力调度控制中心,贵州贵阳 550000
  • 2. 大连理工大学水电与水信息研究所,辽宁大连 116024
  • 折叠

摘要

Abstract

In order to improve the accuracy of new energy ultra-short-term power prediction,a new energy ultra-short-term power prediction method at the regional level is proposed based on the improved affinity propagation(AP)clustering and the dual attention mechanism,with full consideration of the spatial and temporal complementary characteristics of the power sources and the key meteorological information.Firstly,the evaluation indexes of complementarity between power stations are established,and the complementarity matrix of regional power stations is calculated,and the spatial clustering of regional power stations is carried out by using the improved AP clustering algorithm.Then,the attention mechanism in both temporal and feature dimensions is introduced to capture the key meteorological features of the aggregation area.Finally,the new energy output ultra-short-term prediction model based on the bi-directional long and short-term memory(Bi-LSTM)is established on the basis of the proposed approach.Through actual data verification,the prediction method proposed has higher accuracy than the overall regional prediction and the traditional AP clustering prediction.Meanwhile,compared with the traditional correlation coefficient method,the prediction model incorporating the attention mechanism in this paper is more effective in capturing the meteorological characteristics of the convergence area.

关键词

新能源出力/超短期预测/近邻传播聚类/双向长短期记忆/注意力机制

Key words

new energy output/ultra-short-term forecasting/affinity propagation(AP)clustering algorithm/bi-directional long and short-term memory(Bi-LSTM)/attention mechanism

分类

动力与电气工程

引用本文复制引用

苏华英,林晨,张俨,王融融,程春田,张俊涛..基于改进AP聚类和双重注意力机制的区域级新能源超短期出力预测方法[J].广东电力,2025,38(3):8-17,10.

基金项目

贵州电网有限责任公司电力调度控制中心高比例新能源电网水电灵活性量化动态评估及智慧调控技术研究项目(GZKJXM20220086) (GZKJXM20220086)

国家自然科学基金重点项目(52239001) (52239001)

国家自然科学基金项目(52409010) (52409010)

广东电力

OA北大核心

1007-290X

访问量0
|
下载量0
段落导航相关论文