| 注册
首页|期刊导航|广东电力|基于数据增强和锚框优化的输电线路金具检测方法

基于数据增强和锚框优化的输电线路金具检测方法

吕旺燕 聂铭 黄丰 罗青红 袁超 李桥

广东电力2025,Vol.38Issue(3):27-36,10.
广东电力2025,Vol.38Issue(3):27-36,10.DOI:10.3969/j.issn.1007-290X.2025.03.004

基于数据增强和锚框优化的输电线路金具检测方法

Transmission Line Fitting Detection Method Based on Data Augmentation and Anchor Box Optimization

吕旺燕 1聂铭 1黄丰 1罗青红 2袁超 2李桥2

作者信息

  • 1. 广东省电力装备可靠性企业重点实验室,广东电网有限责任公司电力科学研究院,广东 广州 510080
  • 2. 湖南大学电气与信息工程学院,湖南长沙 410082
  • 折叠

摘要

Abstract

Corrosion,damages,and dirt on fittings seriously threaten the safe and stable operation of transmission lines.To detect these defects,unmanned aerial vehicles(UAV)are typically used for intelligent inspections.Accurately identifying fittings in high-resolution images captured by drones is crucial for subsequent defect detection.For these images,this paper proposes a fitting recognition method based on data augmentation and anchor box optimization.Firstly,a dataset of typical images containing five categories is constructed using images captured by UAV.These images are then enhanced through rotation,mirroring,and brightness adjustments.Subsequently,an improved Faster R-CNN network is built using ResNet50 with feature pyramid network(FPN)structure,an improved region proposal network(RPN)module,and an ROI_heads module.This networks are trained and tested on the aforementioned dataset.Experimental results show that the proposed improved Faster R-CNN model can effectively detect five types of power fittings,achieving an average precision of 85.84%.This method can assist transmission line inspection and maintenance personnel in the intelligent identification and defect detection of aerial fittings images.

关键词

输电线路/金具检测/智能巡检/深度学习/数据增强

Key words

transmission lines/fitting detection/intelligent inspection/deep learning/data enhancement

分类

动力与电气工程

引用本文复制引用

吕旺燕,聂铭,黄丰,罗青红,袁超,李桥..基于数据增强和锚框优化的输电线路金具检测方法[J].广东电力,2025,38(3):27-36,10.

基金项目

中国南方电网有限责任公司重点科技项目(GDKJXM20222555(036100KK52222079)) (GDKJXM20222555(036100KK52222079)

广东电力

OA北大核心

1007-290X

访问量0
|
下载量0
段落导航相关论文