| 注册
首页|期刊导航|国防科技大学学报|面向缺失多元时间序列的图神经网络异常检测算法

面向缺失多元时间序列的图神经网络异常检测算法

高杨 王新宇 贺达 宋明黎 周春燕

国防科技大学学报2025,Vol.47Issue(3):32-40,9.
国防科技大学学报2025,Vol.47Issue(3):32-40,9.DOI:10.11887/j.cn.202503004

面向缺失多元时间序列的图神经网络异常检测算法

Anomaly detection algorithm based on graph neural network for missing multivariate time series

高杨 1王新宇 1贺达 2宋明黎 1周春燕3

作者信息

  • 1. 浙江大学计算机科学与技术学院,浙江 杭州 310027
  • 2. 浙江大学软件学院,浙江宁波 315048
  • 3. 浙江省平安建设大数据重点实验室,浙江 杭州 310016
  • 折叠

摘要

Abstract

Addressing the issue of anomaly detection on missing multivariate time series data in real IoT(Internet of things)environments,a novel method on multivariate time series anomaly detection algorithm intergrated with graph embedding of missing information was proposed.Using a joint learning framework of pre-interpolation and anomaly detection task fusion,a GNN(graph neural network)pre-interpolation module based on time series Gaussian kernel function was designed to realize the joint optimization of pre-interpolation and anomaly detection task.A graph structure learning method for embedding missing information in time series data was proposed,using graph attention mechanism to fuse missing information masking matrix and spatiotemporal feature vectors,effectively modeling the potential connections of missing data distribution in multivariate time series.The performance of the algorithm was verified on real IoT sensor datasets.Experimental results prove that the proposed method significantly outperform the mainstream two-stage methods on the task of missing multivariate time series anomaly detection.The comparative experiment of the pre-interpolation module fully prove the effectiveness of the GNN pre-interpolation layer based on the Gaussian kernel function.

关键词

多元时间序列/异常检测/图神经网络/预插值

Key words

multivariate time series/anomaly detection/graph neural network/pre-interpolation

分类

计算机与自动化

引用本文复制引用

高杨,王新宇,贺达,宋明黎,周春燕..面向缺失多元时间序列的图神经网络异常检测算法[J].国防科技大学学报,2025,47(3):32-40,9.

基金项目

浙江省"领雁"研发攻关计划资助项目(2024C01114) (2024C01114)

国家自然科学基金联合基金重点资助项目(U20B2066) (U20B2066)

国防科技大学学报

OA北大核心

1001-2486

访问量0
|
下载量0
段落导航相关论文