| 注册
首页|期刊导航|河北工业科技|引入注意力机制的恶意URL检测算法研究

引入注意力机制的恶意URL检测算法研究

刘拥民 翟佳慧 徐卓农 邓伟豪 麻海志

河北工业科技2025,Vol.42Issue(3):221-230,10.
河北工业科技2025,Vol.42Issue(3):221-230,10.DOI:10.7535/hbgykj.2025yx03003

引入注意力机制的恶意URL检测算法研究

Research on malicious URL detection algorithms incorporating attention mechanisms

刘拥民 1翟佳慧 1徐卓农 1邓伟豪 1麻海志1

作者信息

  • 1. 中南林业科技大学电子信息与物理学院,湖南长沙 410004||中南林业科技大学智慧林业云研究中心,湖南长沙 410004
  • 折叠

摘要

Abstract

To solve the problem of traditional models struggling to capture global and local features when processing long URLs(uniform resource locator),a BERT-CNN based on hierarchical attention mechanism was proposed.This model captured the global semantic information of URLs through the BERT(bidirectional encoder representations from transformers)module and extracted local features of URLs through the convolutional neural network(CNN).The hierarchical attention mechanism was introduced between BERT and CNN,enabling the model to dynamically allocate attention weights at different levels and better capture key information in URLs.By introducing a sparse attention mechanism,the computational complexity and memory overhead of the model were reduced,while the global semantic understanding capability of BERT was retained.The comparative experiments,ablation experiments,and visualization experiments were conducted on the public malicious URL detection dataset to verify the performance of the proposed model.The results show that the BERT-CNN model based on the hierarchical attention mechanism achieves an accuracy of 96.8%in detecting malicious URLs,which is 2.5 percentage points higher than the BERT-CNN baseline model;the F1 score reaches 95.3%,which is 2.1 percentage points higher than the BERT-CNN baseline model.The malicious URL detection model with the attention mechanism has a significant advantage in capturing the global and local features of URLs,which can provide new technical paths and solutions for abnormal traffic detection.

关键词

自然语言处理/卷积神经网络/恶意URL/BERT模型/分层注意力机制

Key words

natural language processing/convolutional neural network(CNN)/malicious URL/BERT model/hierarchical attention mechanism

分类

计算机与自动化

引用本文复制引用

刘拥民,翟佳慧,徐卓农,邓伟豪,麻海志..引入注意力机制的恶意URL检测算法研究[J].河北工业科技,2025,42(3):221-230,10.

基金项目

国家自然科学基金(31870532) (31870532)

长沙市科技计划项目(kq2402265) (kq2402265)

河北工业科技

1008-1534

访问量0
|
下载量0
段落导航相关论文