| 注册
首页|期刊导航|计算机工程|基于大内核自适应融合的小目标检测算法

基于大内核自适应融合的小目标检测算法

王磊 胡君红 任洋

计算机工程2025,Vol.51Issue(6):65-73,9.
计算机工程2025,Vol.51Issue(6):65-73,9.DOI:10.19678/j.issn.1000-3428.0068540

基于大内核自适应融合的小目标检测算法

Small Object Detection Algorithm Based on Large Kernel Adaptive Fusion

王磊 1胡君红 1任洋1

作者信息

  • 1. 华中师范大学物理科学与技术学院,湖北武汉 430079
  • 折叠

摘要

Abstract

To address the challenges faced by current single-stage object detection algorithms based on convolutional neural networks(such as the YOLO series and VFNet)in high-altitude aerial shooting scenarios-including complex backgrounds,low detection accuracy,and feature overlap,this study proposes an end-to-end object detection algorithm called CSPENet.First,a deep convolutional network,CSPNeXt,with large kernels is used as the model's backbone,enhancing its capability to capture global context.Second,by introducing a Feature Refinement Module(FRM)in both spatial and channel dimensions,adaptive weights are generated that can effectively suppress overlapping features are generated.It adds a Receptive Field Attention(RFA)mechanism,based on mobile networks in the feature fusion stage to solve the problem of large kernel parameter sharing.Finally,the Efficient Intersection over Union(EIoU)loss function is utilized as the model's regression loss,separating the influencing factors of the aspect ratios between the predicted and ground truth boxes,which leads to faster convergence and improved localization accuracy.Experimental results demonstrate that CSPENet achieves an average accuracy improvement of 4.4 percentage points compared with the DINO algorithm on the VisDrone-DET dataset,offering a novel solution for research and applications in small object detection algorithms.

关键词

大内核/小目标/上下文信息/特征细化/自适应融合/感受野

Key words

large kernel/small object/contextual information/feature refinement/adaptive fusion/receptive field

分类

计算机与自动化

引用本文复制引用

王磊,胡君红,任洋..基于大内核自适应融合的小目标检测算法[J].计算机工程,2025,51(6):65-73,9.

基金项目

国家自然科学基金(60101204) (60101204)

湖北省自然科学基金(2020CFB474). (2020CFB474)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文