| 注册
首页|期刊导航|计算机工程|融合可变形核和自注意力的点云分类分割边卷积网络

融合可变形核和自注意力的点云分类分割边卷积网络

陈思帆 杨家志 黄琳 吕志玮 沈露

计算机工程2025,Vol.51Issue(6):146-154,9.
计算机工程2025,Vol.51Issue(6):146-154,9.DOI:10.19678/j.issn.1000-3428.0069284

融合可变形核和自注意力的点云分类分割边卷积网络

Edge Convolutional Network for Point Cloud Classification and Segmentation Incorporated Deformable Kernel and Self-Attention

陈思帆 1杨家志 2黄琳 3吕志玮 1沈露1

作者信息

  • 1. 桂林理工大学计算机科学与工程学院,广西桂林 541006
  • 2. 桂林理工大学计算机科学与工程学院,广西桂林 541006||桂林航天工业学院机电工程学院,广西桂林 541004
  • 3. 桂林理工大学物理与电子信息工程学院,广西桂林 541006
  • 折叠

摘要

Abstract

Owing to the unordered and discrete nature of point cloud data,traditional dynamic graph convolution method faces significant challenges in processing this data,making it difficult to accurately represent feature correspondences between 3D points.To address this issue,a network called DKSA-Net is proposed,which incorporates deformable kernels and self-attention.This network consists of two main modules:Deformable Kernels edge Convolution(DKConv)and Self-Attention edge Convolution(SAConv).By integrating deformable kernels with edge convolution to construct the DKConv module,the network can dynamically learn point features,generate deformable kernels,and maintain feature correspondences,thereby improving the handling of feature correspondences.In addition,by introducing the self-attention mechanism and combining it with edge convolution to construct the SAConv module,the network can perform finer-grained feature extraction,fully capture important point cloud features,and enhance the discriminative ability of the model.The experimental results show that DKSA-Net achieves excellent performance on the ModelNet40 and ShapeNet datasets,with an Overall Accuracy(OA)of 93.4%,an average Accuracy(mAcc)of 90.7%,and an average Intersection-over-Union(mIoU)of 86.1%.Furthermore,it demonstrates relatively low model complexity and high robustness,showcasing exceptional capabilities in processing point cloud data.

关键词

可变形核/自注意力/点云分类/点云分割/深度学习

Key words

deformable kernel/self-attention/point cloud classification/point cloud segmentation/deep learning

分类

信息技术与安全科学

引用本文复制引用

陈思帆,杨家志,黄琳,吕志玮,沈露..融合可变形核和自注意力的点云分类分割边卷积网络[J].计算机工程,2025,51(6):146-154,9.

基金项目

国家自然科学基金(62166012). (62166012)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文