| 注册
首页|期刊导航|计算机工程|一种隐私保护的抗投毒攻击联邦学习方案

一种隐私保护的抗投毒攻击联邦学习方案

姚玉鹏 魏立斐 张蕾

计算机工程2025,Vol.51Issue(6):223-235,13.
计算机工程2025,Vol.51Issue(6):223-235,13.DOI:10.19678/j.issn.1000-3428.0069133

一种隐私保护的抗投毒攻击联邦学习方案

A Privacy-Preserving Federated Learning Scheme Against Poisoning Attack

姚玉鹏 1魏立斐 2张蕾1

作者信息

  • 1. 上海海洋大学信息学院,上海 201306
  • 2. 上海海洋大学信息学院,上海 201306||上海海事大学信息工程学院,上海 201306
  • 折叠

摘要

Abstract

Federated learning enables participants to collaboratively model without revealing their raw data,thereby effectively addressing the privacy issue of distributed data.However,as research advances,federated learning continues to face security concerns such as privacy inference attacks and malicious client poisoning attacks.Existing improvements to federated learning mainly focus on either privacy protection or against poisoning attacks without simultaneously addressing both types of attacks.To address both inference and poisoning attacks in federated learning,a privacy-preserving against poisoning federated learning scheme called APFL is proposed.This scheme involves the design of a model detection algorithm that utilizes Differential Privacy(DP)techniques to assign corresponding aggregation weights to each client based on the cosine similarity between the models.Homomorphic encryption techniques are employed for the weighted aggregation of the local models.Experimental evaluations of the MNIST and CIFAR10 datasets demonstrate that APFL effectively filters malicious models and defends against poisoning attacks while ensuring data privacy.When the poisoning ratio is no more than 50%,APFL achieves a model performance consistent with the Federated Averaging(FedAvg)scheme in a non-poisoned environment.Compared with the Krum and FLTrust schemes,APFL exhibits average reductions of 19%and 9%in model test error rate,respectively.

关键词

联邦学习/差分隐私/同态加密/隐私保护/投毒攻击

Key words

federated learning/Differential Privacy(DP)/homomorphic encryption/privacy-preserving/poisoning attack

分类

信息技术与安全科学

引用本文复制引用

姚玉鹏,魏立斐,张蕾..一种隐私保护的抗投毒攻击联邦学习方案[J].计算机工程,2025,51(6):223-235,13.

基金项目

国家自然科学基金面上项目(61972241) (61972241)

上海市自然科学基金面上项目(22ZR1427100) (22ZR1427100)

上海市软科学研究项目(23692106700). (23692106700)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文