| 注册
首页|期刊导航|计算机工程与应用|基于卷积神经网络的图像分类深度学习模型综述

基于卷积神经网络的图像分类深度学习模型综述

刘鸿达 孙旭辉 李沂滨 韩琳 张宇

计算机工程与应用2025,Vol.61Issue(11):1-21,21.
计算机工程与应用2025,Vol.61Issue(11):1-21,21.DOI:10.3778/j.issn.1002-8331.2411-0196

基于卷积神经网络的图像分类深度学习模型综述

Review of Deep Learning Models for Image Classification Based on Convolutional Neural Networks

刘鸿达 1孙旭辉 1李沂滨 1韩琳 1张宇1

作者信息

  • 1. 山东大学 海洋研究院,山东 青岛 266237
  • 折叠

摘要

Abstract

Using neural network model for classification has always been a very important research direction.With the development of deep learning technology,the requirement for neural network model is getting higher and higher.At the same time,high recognition rate,the number of parameters and training time of the model are also highly required.Convo-lutional neural networks have always been the mainstream method for image classification in deep learning.This paper mainly introduces the development history of convolutional neural networks for classification model,and analyzes the construction ideas of each model at different stages.Secondly,the paper reviews relevant examples of Transformer com-bined with convolutional neural networks as well as the application of each model in other fields.Finally,the possible development directions of convolutional neural networks are discussed.

关键词

卷积神经网络/深度学习/图像分类/Transformer

Key words

convolutional neural networks/deep learning/image classification/Transformer

分类

计算机与自动化

引用本文复制引用

刘鸿达,孙旭辉,李沂滨,韩琳,张宇..基于卷积神经网络的图像分类深度学习模型综述[J].计算机工程与应用,2025,61(11):1-21,21.

基金项目

青岛市自然科学基金原创探索项目(24-4-4-zrjj-139-jch). (24-4-4-zrjj-139-jch)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文