| 注册
首页|期刊导航|计算机工程与应用|深度学习的点云语义分割方法综述

深度学习的点云语义分割方法综述

蔡子悦 袁振岳 庞明勇

计算机工程与应用2025,Vol.61Issue(11):22-30,9.
计算机工程与应用2025,Vol.61Issue(11):22-30,9.DOI:10.3778/j.issn.1002-8331.2408-0033

深度学习的点云语义分割方法综述

Survey on Deep-Learning-Based Point Cloud Semantic Segmentation

蔡子悦 1袁振岳 1庞明勇1

作者信息

  • 1. 南京师范大学 教育信息工程研究所,南京 210024
  • 折叠

摘要

Abstract

Point cloud semantic segmentation assigns semantic labels to each point in the point cloud to achieve the seg-mentation of different objects in the scene,which is the foundation for scene understanding.In recent years,with the development of deep learning technology,the combination of deep learning and point cloud semantic segmentation meth-ods has improved the processing efficiency and segmentation accuracy,demonstrating excellent performance,and has been widely used in many fields such as transportation,medicine,architectural design,virtual reality,etc.Based on the review of the development history of point cloud semantic segmentation,this paper classifies and summarizes the existing research,analyzes related datasets and evaluation metrics,and compares the performance of existing methods.Finally,the paper highlights the deficiencies of existing research and looks forward to the future development directions.

关键词

深度学习/点云/语义分割/语义标签/计算机视觉

Key words

deep learning/point cloud/semantic segmentation/semantic labels/computer vision

分类

计算机与自动化

引用本文复制引用

蔡子悦,袁振岳,庞明勇..深度学习的点云语义分割方法综述[J].计算机工程与应用,2025,61(11):22-30,9.

基金项目

江苏省教育科学规划课题立项(B/2023/01/96). (B/2023/01/96)

计算机工程与应用

OA北大核心

1002-8331

访问量1
|
下载量0
段落导航相关论文