| 注册
首页|期刊导航|计算机工程与应用|基于改进YOLOv8的无人机视角下高速公路异常目标检测方法

基于改进YOLOv8的无人机视角下高速公路异常目标检测方法

王芯蕊 王慧琴 王可 郭楠

计算机工程与应用2025,Vol.61Issue(11):105-118,14.
计算机工程与应用2025,Vol.61Issue(11):105-118,14.DOI:10.3778/j.issn.1002-8331.2410-0243

基于改进YOLOv8的无人机视角下高速公路异常目标检测方法

Anomalous Target Detection Method for Highway from UAV Viewpoint Based on Improved YOLOv8

王芯蕊 1王慧琴 1王可 1郭楠2

作者信息

  • 1. 西安建筑科技大学 信息与控制工程学院,西安 710300
  • 2. 西安青禾创智能科技有限公司,西安 710000
  • 折叠

摘要

Abstract

On normally operating highways,there are dangerous targets that interfere with drivers'judgment and pose traffic hazards.When using drones for detection,there are challenges such as occlusion,overlap,dispersion and heterogeneity.To address these issues,a high-precision detection algorithm based on YOLOv8n,called CT-YOLO,is proposed.Firstly,dilated convolu-tion is reconstructed in the C2f module of the YOLOv8 backbone network,and 1×1 convolutions are integrated before and after the convolution to solve the problem of decentralized targeting of application scenarios.Secondly,the classic fea-ture pyramid network is improved,and two additional detection layers are added to enhance detection accuracy for occluded targets.Lastly,an improved triple attention mechanism is integrated into the Head part of the C2f module to enhance the model's ability to capture heterogeneous target information.An image dataset containing 11 types of anomalous targets,including fractures,patches,pericarp,leaves,plastic,potholes,arrows,lane lines,cardboard boxes,oil,and cans,is constructed through video collection,frame extraction,manual annotation,and data augmentation.Experimental results indicate that the CT-YOLO algorithm improves mAP@0.5 by 13.2 percentage points and mAP@0.5:0.95 by 11 percentage points on the anomalous target image dataset,significantly enhancing detection accuracy and demonstrating good practical application effectiveness.

关键词

高速公路/无人机(UAV)/YOLOv8/目标检测/多目标/小目标

Key words

highway/unmanned aerial vehicle(UAV)/YOLOv8/target detection/multiple targets/small targets

分类

计算机与自动化

引用本文复制引用

王芯蕊,王慧琴,王可,郭楠..基于改进YOLOv8的无人机视角下高速公路异常目标检测方法[J].计算机工程与应用,2025,61(11):105-118,14.

计算机工程与应用

OA北大核心

1002-8331

访问量2
|
下载量0
段落导航相关论文