| 注册
首页|期刊导航|计算机工程与应用|改进YOLOv8的无人机航拍小目标检测算法

改进YOLOv8的无人机航拍小目标检测算法

许景科 索祥龙 周磊

计算机工程与应用2025,Vol.61Issue(11):119-131,13.
计算机工程与应用2025,Vol.61Issue(11):119-131,13.DOI:10.3778/j.issn.1002-8331.2411-0459

改进YOLOv8的无人机航拍小目标检测算法

Improved YOLOv8 Algorithm for Small Target Detection in Drone Aerial Photography

许景科 1索祥龙 2周磊2

作者信息

  • 1. 沈阳建筑大学 计算机科学与工程学院,沈阳 110168||辽宁省城市建设大数据管理与分析重点实验室,沈阳 110168||国家特种计算机工程技术研究中心沈阳分中心,沈阳 110168
  • 2. 沈阳建筑大学 计算机科学与工程学院,沈阳 110168
  • 折叠

摘要

Abstract

Detecting small and densely distributed targets in UAV aerial images poses challenges such as complex back-grounds,imbalanced sample numbers,and limited computational power.To address these issues,an improved YOLOv8 algorithm,MFF-YOLOv8(multi-feature fusion YOLOv8),is proposed.This algorithm integrates deformable convolution DCNv3(deformable convolution v3)into the Bottleneck module of the C2f module to enhance feature extraction.A new MFFPN(multi-feature fusion pyramid network)is designed to add more feature fusion routes,retain low-level feature map details,and improve small target detection.Additionally,a P2 small target detection layer is added and the P5 detec-tion layer is optimized to enhance accuracy and reduce parameters.The introduction of the Dyhead(dynamic head)fur-ther improves detection precision of the model.In the experiment on the Visdrone2019 dataset,MFF-YOLOv8s has a 10.2 percentage points and 7.1 percentage points increase in mAP50 and mAP50:95 respectively compared to YOLOv8s,with a 77.04%reduction in parameters.The model's detection accuracy surpasses that of YOLOv11,meeting the preci-sion and lightweight requirements for UAV platforms.

关键词

YOLOv8/小目标检测/多尺度特征融合/轻量化

Key words

YOLOv8/small targets detection/multi-scale feature fusion/lightweight

分类

计算机与自动化

引用本文复制引用

许景科,索祥龙,周磊..改进YOLOv8的无人机航拍小目标检测算法[J].计算机工程与应用,2025,61(11):119-131,13.

基金项目

国家重点研发计划(2020YFC0833203). (2020YFC0833203)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文