| 注册
首页|期刊导航|计算机应用与软件|基于矩阵分解的不同缺失模式下库存缺失数据插补模型研究

基于矩阵分解的不同缺失模式下库存缺失数据插补模型研究

邹昕彤 金辉

计算机应用与软件2025,Vol.42Issue(5):56-61,6.
计算机应用与软件2025,Vol.42Issue(5):56-61,6.DOI:10.3969/j.issn.1000-386x.2025.05.009

基于矩阵分解的不同缺失模式下库存缺失数据插补模型研究

A MATRIX DECOMPOSITION-BASED MODEL FOR INTERPOLATION OF MISSING INVENTORY DATA UNDER DIFFERENT MISSING PATTERNS

邹昕彤 1金辉1

作者信息

  • 1. 辽宁工业大学汽车与交通工程学院 辽宁锦州 121000
  • 折叠

摘要

Abstract

A missing inventory data interpolation model based on improved matrix decomposition is designed for inventory missing data.According to the characteristics of inventory data,the unit root test and Nemenyi post-hoc multiple comparison was adopted to analyze the data stationarity and significance.For missing data with different missing patterns,a time regularizer long short-term memory neural network was introduced to obtain the time dependence in time series data,and a space regularizer graph Laplacian was used to consider the spatiotemporal characteristics by taking advantage of the spatial correlation among network sensors.Meanwhile,an Adam optimizer was added to achieve high-performance interpolation of inventory missing data.According to the data characteristics,the RMSE evaluation metric was adopted for model evaluation.Through comparative studies with advanced methods,it is proved that the model has superior interpolation performance.

关键词

数字物流/库存管理/缺失数据插补/时间序列/矩阵分解/Adam优化器

Key words

Digital logistics/Inventory management/Missing data interpolation/Time series/Matrix decomposition/Adam optimizer

分类

信息技术与安全科学

引用本文复制引用

邹昕彤,金辉..基于矩阵分解的不同缺失模式下库存缺失数据插补模型研究[J].计算机应用与软件,2025,42(5):56-61,6.

计算机应用与软件

OA北大核心

1000-386X

访问量4
|
下载量0
段落导航相关论文