| 注册
首页|期刊导航|计算机应用与软件|基于稀疏自编码器SAE和优化RUSBoost的窃电检测

基于稀疏自编码器SAE和优化RUSBoost的窃电检测

袁铭敏 姚鹏 易欣 曾纬和 李乾 孙健

计算机应用与软件2025,Vol.42Issue(5):62-71,10.
计算机应用与软件2025,Vol.42Issue(5):62-71,10.DOI:10.3969/j.issn.1000-386x.2025.05.010

基于稀疏自编码器SAE和优化RUSBoost的窃电检测

ELECTRICITY THEFT DETECTION BASED ON SPARSE AUTOENCODER AND OPTIMIZED RUSBOOST

袁铭敏 1姚鹏 1易欣 1曾纬和 1李乾 1孙健1

作者信息

  • 1. 国网北京市电力公司电力科学研究院 北京 100075
  • 折叠

摘要

Abstract

In order to improve the detection accuracy and reduce the computational complexity,a electricity theft detection based on sparse autoencoder(SAE)and optimized RUSBoost is proposed.According to the three aspects of the relationship between users,temperature and power consumption,the electricity users were marked as benign or malicious users.After assigning labels to the data,features were extracted from the data by introducing reconstruction based independent component analysis and SAE.Differential evolution random under sampling enhanced RUSBoost and Jaya optimized RUSBoost were used for classification.The experimental results of the last two data sets show that the proposed method can achieve low complexity and high-precision electricity theft detection.

关键词

重构独立成分分析/稀疏自动编码器/窃电检测/差分进化

Key words

Reconstruction independent component analysis/Sparse autoencoder/Electricity theft detection/Differ-ential evolution

分类

信息技术与安全科学

引用本文复制引用

袁铭敏,姚鹏,易欣,曾纬和,李乾,孙健..基于稀疏自编码器SAE和优化RUSBoost的窃电检测[J].计算机应用与软件,2025,42(5):62-71,10.

基金项目

国家电网公司总部科技项目(520201150012). (520201150012)

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文