| 注册
首页|期刊导航|计算机应用与软件|基于改进YOLOv4-Tiny的交通标志图像识别算法研究

基于改进YOLOv4-Tiny的交通标志图像识别算法研究

孙海明 付世超

计算机应用与软件2025,Vol.42Issue(5):164-170,190,8.
计算机应用与软件2025,Vol.42Issue(5):164-170,190,8.DOI:10.3969/j.issn.1000-386x.2025.05.023

基于改进YOLOv4-Tiny的交通标志图像识别算法研究

TRAFFIC SIGN IMAGE RECOGNITION ALGORITHM BASED ON IMPROVED YOLOV4-TINY

孙海明 1付世超2

作者信息

  • 1. 湖北汽车工业学院机械工程学院 湖北十堰 442002||湖北中程科技产业技术研究院有限公司 湖北十堰 442000
  • 2. 湖北汽车工业学院机械工程学院 湖北十堰 442002
  • 折叠

摘要

Abstract

In order to realize the accurate recognition of traffic signs by autonomous vehicle,a traffic sign image recognition algorithm YOLO-slim based on improved YOLOv4-Tiny is proposed.Convolution attention module was added to the original network and shallow features were introduced into the feature pyramid network to improve the utilization rate of feature information between different layers.Depthwise separable convolution was used to replace standard convolution to reduce the number of network parameters and compress the model weight file.Focus loss function was used to balance difficult samples in model training.Experimental results show that YOLO-slim's mean average precision is 94.41%,weight file is 4.49 MB,and detection speed is 8.0 ms.The improved algorithm has higher accuracy and smaller weight files,and is more suitable for deployment in vehicle-mounted computing units.

关键词

交通标志/算法/注意力机制/深度可分离卷积

Key words

Traffic signs/Algorithm/Attention mechanism/Depthwise separable convolution

分类

计算机与自动化

引用本文复制引用

孙海明,付世超..基于改进YOLOv4-Tiny的交通标志图像识别算法研究[J].计算机应用与软件,2025,42(5):164-170,190,8.

基金项目

湖北省科技厅重点项目(2021BED004). (2021BED004)

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文