| 注册
首页|期刊导航|计算机应用与软件|基于安全大模型的网络安全威胁检测框架研究

基于安全大模型的网络安全威胁检测框架研究

李橙 陈铭丰 苏嘉珺 杨磊 梁海航

计算机应用与软件2025,Vol.42Issue(5):179-190,12.
计算机应用与软件2025,Vol.42Issue(5):179-190,12.DOI:10.3969/j.issn.1000-386x.2025.05.025

基于安全大模型的网络安全威胁检测框架研究

CYBERSECURITY THREAT DETECTION FRAMEWORK BASED ON SECURITYGPT

李橙 1陈铭丰 2苏嘉珺 2杨磊 1梁海航3

作者信息

  • 1. 上海市公安局虹口分局 上海 200000
  • 2. 上海市公安局 上海 200000
  • 3. 深信服科技股份有限公司 上海 200000
  • 折叠

摘要

Abstract

In response to the challenges in the field of cybersecurity risk detection,such as the difficulty in pinpointing genuine attacks,low efficiency in risk assessment,judgment and disposal,and the high technical requirements for security personnel,a deep threat detection framework based on a SecurityGPT is proposed.This paper constructed a high-performing generative artificial intelligence large model tailored for the vertical domain of cybersecurity through corpus construction,model pre-training,instruction fine-tuning,and model inference acceleration.On this foundation,to further enhance the accuracy and detection efficiency of the model,a multi-dimensional collaborative research was conducted focusing on the integration of the security large model with traditional rule-based models and small-scale machine learning models.This initiative aimed to establish a tripartite deep threat detection architecture and tested in actual business environments.Experimental results show that this framework can ensure an average network risk detection rate of over 95%with a false positive rate below 5%,while significantly improving detection efficiency and reducing labor costs,demonstrating excellent application value.

关键词

网络安全/安全大模型/生成式人工智能/模型推理加速/模型协同

Key words

Cybersecurity/SecurityGPT/Generative artificial intelligence/Model inference acceleration/Model collaboration

分类

计算机与自动化

引用本文复制引用

李橙,陈铭丰,苏嘉珺,杨磊,梁海航..基于安全大模型的网络安全威胁检测框架研究[J].计算机应用与软件,2025,42(5):179-190,12.

计算机应用与软件

OA北大核心

1000-386X

访问量4
|
下载量0
段落导航相关论文