| 注册
首页|期刊导航|南京信息工程大学学报|基于大面阵无人机多光谱遥感的水生植被精细分类研究

基于大面阵无人机多光谱遥感的水生植被精细分类研究

高敏 谢娅 李潇屹 董韬 陈玥 张方方 王胜蕾 申维 李俊生

南京信息工程大学学报2025,Vol.17Issue(3):414-422,9.
南京信息工程大学学报2025,Vol.17Issue(3):414-422,9.DOI:10.13878/j.cnki.jnuist.20240521001

基于大面阵无人机多光谱遥感的水生植被精细分类研究

Classification of aquatic vegetation species using large-format multispectral UAV remote sensing

高敏 1谢娅 1李潇屹 2董韬 2陈玥 2张方方 3王胜蕾 3申维 4李俊生5

作者信息

  • 1. 中国地质大学(北京)地球科学与资源学院,北京,100083||中国科学院 数字地球重点实验室,北京,100094
  • 2. 航天数维高新技术股份有限公司,北京,100070
  • 3. 中国科学院 数字地球重点实验室,北京,100094||可持续发展大数据国际研究中心,北京,100094
  • 4. 中国地质大学(北京)地球科学与资源学院,北京,100083
  • 5. 中国科学院 数字地球重点实验室,北京,100094||可持续发展大数据国际研究中心,北京,100094||中国科学院大学 电子电气与通信工程学院,北京,100049
  • 折叠

摘要

Abstract

Aquatic vegetation is an important indicator of river health,and dynamic monitoring of riverine aquatic vegetation is crucial for understanding its status.However,both traditional field surveys and satellite remote sensing exhibit obvious limitations in monitoring such vegetation.In this study,a UAV(Unmanned Aerial Vehicle)-mounted high-pixel Aerospace Shuwei KP-6 multispectral camera is employed to acquire multispectral images of Baigou River in Gu'an county,Hebei province.Three supervised classification methods are utilized to classify aquatic vegetation species such as reeds,Nymphoides Peltata,and Ceratophyllum demersum L.in Baigou River,of which the maximum likelihood method achieves the highest accuracy with an overall accuracy of 92.8%and a Kappa coefficient of 0.91.In addition,the high-pixel Aerospace Shuwei KP-6 camera is compared with a variety of high-resolution satellites and other UAV-mounted multispectral cameras,revealing its advantages of high spatial resolution,wide coverage,and flexible data acquisition in riverine aquatic vegetation monitoring.This study provides a useful reference for the application of UAV-mounted multispectral remote sensing in riverine aquatic vegetation monitoring.

关键词

无人机/多光谱/白沟河/水生植被/监督分类

Key words

unmanned aerial vehicle(UAV)/multispectral/Baigou River/aquatic vegetation/supervised classifica-tion

分类

环境科学

引用本文复制引用

高敏,谢娅,李潇屹,董韬,陈玥,张方方,王胜蕾,申维,李俊生..基于大面阵无人机多光谱遥感的水生植被精细分类研究[J].南京信息工程大学学报,2025,17(3):414-422,9.

基金项目

国家自然科学基金(42271363) (42271363)

南京信息工程大学学报

OA北大核心

1674-7070

访问量0
|
下载量0
段落导航相关论文