| 注册
首页|期刊导航|科技创新与应用|重载机车车轮疲劳损伤预测方法

重载机车车轮疲劳损伤预测方法

朱文龙 江平 刘波 陈佳玉

科技创新与应用2025,Vol.15Issue(16):32-38,7.
科技创新与应用2025,Vol.15Issue(16):32-38,7.DOI:10.19981/j.CN23-1581/G3.2025.16.008

重载机车车轮疲劳损伤预测方法

朱文龙 1江平 1刘波 1陈佳玉2

作者信息

  • 1. 株洲中车时代电气股份有限公司,湖南 株洲 412001
  • 2. 西南交通大学,成都 610031
  • 折叠

摘要

Abstract

To explore the potential relationship between fatigue defects in heavy-haul locomotive wheels and maintenance parameters,a locomotive wheel state prediction model based on SMOTENC(Synthetic Minority Oversampling Technique for Nominal and Continuous data)and Support Vector Machines(SVM)designed for imbalanced datasets was proposed.Firstly,regarding the mechanism of wheel fatigue defects,six influencing parameters were extracted from the maintenance data.Subsequently,incorporating the historical maintenance data of railway vehicle wheels,and addressing the imbalanced nature of the wheel fatigue defect data,the SMOTENC algorithm was employed to perform oversampling,thereby resolving the issue of data imbalance.Finally,the Support Vector Machine(SVM)was utilized to predict wheel fatigue damage.The validation results indicate that the established SMOTENC-SVM model achieves an accuracy of 96.2%in predicting wheel fatigue damage.Compared to control models such as Decision Tree and Random Forest,the proposed model exhibits the highest Area Under the Curve(AUC)value of 95.9%.Furthermore,the model demonstrates superior identification capabilities for both normal and fatigue-defected wheels.

关键词

不平衡数据/机车/疲劳缺陷/SMOTENC/SVM

Key words

unbalanced datasets/locomotive/fatigue defect/SMOTENC/SVM

分类

交通运输

引用本文复制引用

朱文龙,江平,刘波,陈佳玉..重载机车车轮疲劳损伤预测方法[J].科技创新与应用,2025,15(16):32-38,7.

基金项目

朔黄铁路发展有限责任公司科技创新项目(2023510105001387) (2023510105001387)

科技创新与应用

2095-2945

访问量0
|
下载量0
段落导航相关论文