| 注册
首页|期刊导航|强激光与粒子束|CSNS残余气体电离型束流剖面测量畸变校正

CSNS残余气体电离型束流剖面测量畸变校正

刘孟宇 孙纪磊 徐智虹 杨涛 聂小军 黄蔚玲 杨仁俊 康玲 刘华昌

强激光与粒子束2025,Vol.37Issue(6):90-97,8.
强激光与粒子束2025,Vol.37Issue(6):90-97,8.DOI:10.11884/HPLPB202537.240271

CSNS残余气体电离型束流剖面测量畸变校正

Ddistortion correction of CSNS Ionization Profile Monitor measurement

刘孟宇 1孙纪磊 1徐智虹 2杨涛 2聂小军 2黄蔚玲 1杨仁俊 1康玲 1刘华昌1

作者信息

  • 1. 中国科学院高能物理研究所,北京 100049||中国科学院大学,北京 100049||散裂中子源科学中心,广东 东莞 523803
  • 2. 中国科学院高能物理研究所,北京 100049||散裂中子源科学中心,广东 东莞 523803
  • 折叠

摘要

Abstract

The ionization profile monitor(IPM)can provide critical beam distribution information required for real-time debugging and stable operation of high-current proton accelerators.The IPM system of the China Spallation Neutron Source(CSNS)Linac adopts a compact structural design.It collects data in ion mode and performs one-dimensional transverse beam distribution measurement through an optical imaging system.However,the honeycomb mesh structure at the electrode plate apertures blocks some ions or electrons from entering the microchannel plate,causing imaging shadows and introducing beam distribution distortion.Offline numerical algorithms must be used for correction.In this paper,partial differential equation(PDE)restoration and machine learning algorithms are used to correct the imaging shadows and beam distribution distortion caused by the honeycomb mesh of the IPM in the CSNS linac.The unsupervised machine learning method DIP(Deep Image Prior)was employed,and the corrected beam size deviates from the theoretical expectation by less than 10%,while maintaining a good signal-to-noise ratio.

关键词

残余气体电离型束流剖面探测器/机器学习/图像校正

Key words

ionization profile monitor/machine learning/image correction

分类

核科学

引用本文复制引用

刘孟宇,孙纪磊,徐智虹,杨涛,聂小军,黄蔚玲,杨仁俊,康玲,刘华昌..CSNS残余气体电离型束流剖面测量畸变校正[J].强激光与粒子束,2025,37(6):90-97,8.

基金项目

广东省自然科学基金(2021A1515010269) (2021A1515010269)

国家自然科学基金项目(12275294) (12275294)

强激光与粒子束

OA北大核心

1001-4322

访问量0
|
下载量0
段落导航相关论文