| 注册
首页|期刊导航|生物医学工程研究|基于XResT网络的多标签心电分类算法

基于XResT网络的多标签心电分类算法

张雨龙 韩澍泽 李钰雯 刘澄玉

生物医学工程研究2025,Vol.44Issue(2):67-74,8.
生物医学工程研究2025,Vol.44Issue(2):67-74,8.DOI:10.19529/j.cnki.1672-6278.2025.02.01

基于XResT网络的多标签心电分类算法

Multi-label ECG classification algorithm based on the XResT network

张雨龙 1韩澍泽 1李钰雯 1刘澄玉1

作者信息

  • 1. 东南大学仪器科学与工程学院,数字医学工程全国重点实验室,南京 210096
  • 折叠

摘要

Abstract

Aiming at the problem of insufficient use of hierarchical feature information in the feature extraction process of traditional convolutional neural networks due to scale limitations,we proposed a multi-label classification model XResT for electrocardiogram(ECG)signals based on deep feature fusion using residual convolutional network and Transformer encoder.Firstly,the XResT em-ployed an improved ResNet101 backbone network to achieve deep mining of multi-level local features of ECG signals.Subsequently,the Transformer encoder was adopted for global feature enhancement and a cross-layer coordinate attention was designed to achieve dy-namic fusion of local and global features.Comparative experiments on the CPSC-2018 dataset demonstrated that while the accuracy rate of this model was 96.43%,the average F1 score of multi-label classification reached 82.87%,a 3%improvement over existing bench-mark models.The ablation experiment verified the effectiveness of the cross-layer attention mechanism for complex heart rhythm char-acteristics such as ventricular premature beats.The feature fusion framework proposed in this study provides new insights for multi-level feature extraction of ECG signals,significantly improving the clinical applicability of automatic arrhythmia diagnosis systems.

关键词

心电分类/多标签/特征融合/多层次特征/注意力机制

Key words

ECG classification/Multi-label/Feature fusion/Multi-level feature/Attention mechanism

分类

基础医学

引用本文复制引用

张雨龙,韩澍泽,李钰雯,刘澄玉..基于XResT网络的多标签心电分类算法[J].生物医学工程研究,2025,44(2):67-74,8.

基金项目

国家自然科学基金项目(62171123) (62171123)

国家重点研发计划(2023YFC3603600). (2023YFC3603600)

生物医学工程研究

1672-6278

访问量0
|
下载量0
段落导航相关论文