生物医学工程研究2025,Vol.44Issue(2):90-96,7.DOI:10.19529/j.cnki.1672-6278.2025.02.04
基于时间序列和KA-Transformer模型的早期脓毒症预测
Early sepsis prediction based on time series and KA-Transformer models
朱宇 1张天逸 2张立 3程云章2
作者信息
- 1. 上海理工大学健康科学与工程学院,上海 200093||上海介入医疗器械工程技术研究中心,上海 200093||海军军医大学第二附属医院胸心外科,上海 200003
- 2. 上海理工大学健康科学与工程学院,上海 200093||上海介入医疗器械工程技术研究中心,上海 200093
- 3. 同济大学医学院,上海 200092
- 折叠
摘要
Abstract
To achieve early prediction of sepsis,we designed a prediction model KA-Transformer based on time series data.A ker-nel attention mechanism was introduced in the KA-Transformer to improve issues such as limited training samples,numerous parame-ters,and uneven sample distribution.With the input of continuous time series data,at three prediction time points 1,6,and 12 h before sepsis onset,the area under the receiver operating characteristic curve of the model for predicting sepsis were 0.962,0.944 and 0.984,respectively,the accuracy rates were 92.3%,93.9%and 96.1%,respectively.The experimental results show that the KA-Transformer significantly outperforms existing methods in terms of accuracy and generalization ability for sepsis prediction,and has the potential to enhance the timeliness and reliability of prediction for sepsis prediction.关键词
脓毒症/时间序列/深度学习/核注意力/TransformerKey words
Sepsis/Time series/Deep learning/Kernel attention/Transformer分类
基础医学引用本文复制引用
朱宇,张天逸,张立,程云章..基于时间序列和KA-Transformer模型的早期脓毒症预测[J].生物医学工程研究,2025,44(2):90-96,7.