| 注册
首页|期刊导航|水科学进展|基于物理机制耦合深度学习的黄河干流流量演进模拟

基于物理机制耦合深度学习的黄河干流流量演进模拟

罗赟 张翔宇 董增川 李强坤 左其亭 韩金旭 周康军

水科学进展2025,Vol.36Issue(2):217-229,13.
水科学进展2025,Vol.36Issue(2):217-229,13.DOI:10.14042/j.cnki.32.1309.2025.02.004

基于物理机制耦合深度学习的黄河干流流量演进模拟

Simulation of river flow evolution in the Yellow River main stream based on the coupling of physical mechanisms and deep learning

罗赟 1张翔宇 2董增川 3李强坤 1左其亭 4韩金旭 1周康军5

作者信息

  • 1. 黄河水利委员会黄河水利科学研究院,河南郑州 450003||河南省黄河流域生态保护与修复重点实验室,河南郑州 450003
  • 2. 黄河水利委员会黄河水利科学研究院,河南郑州 450003||河海大学水文水资源学院,江苏南京 210098
  • 3. 河海大学水文水资源学院,江苏南京 210098
  • 4. 郑州大学水利与交通学院,河南郑州 450001
  • 5. 黄河水利委员会水资源管理局,河南郑州 450003
  • 折叠

摘要

Abstract

Evolution of river flow is vital for water regulation in the Yellow River basin.There is an urgent need for a high-precision,low-latency simulation model that considers an artificial lateral water cycle to meet the demand for accurate and refined water regulation from water sources to end-users.Based on the analysis of unbalanced water volume in the Yellow River's main stream,this study used the CNN-LSTM algorithm to build flow evolution models.The SCE-UA algorithm was used to tune the parameters.The"store-wet-release-dry"mechanism of the Longyangxia Reservoir was embedded in the globally-calibrated CNN-LSTM model for simulation.Model comparison indicated the following:① Unbalanced water volume in the main stream is in the order of middle>lower>upper reaches,with no significant sub-interval correlation.② The comprehensive evaluation indicators(ER-R-M)mean values of the hydrological method,CNN-LSTM(local optimization),CNN-LSTM(global optimization),and the coupled simulation were 0.627,0.613,0.774,and 0.811 respectively.The upper and lower reaches had higher accuracy than the middle reaches.③ Building a deep neural network guided by physical simulation can effectively limit the solution space,with 29.3%higher accuracy than the hydrological method,which has practical value for water regulation in the Yellow River.

关键词

流量演进/不平衡水量/物理机制/深度学习/黄河干流

Key words

evolution of river flow/unbalanced water volume/physical mechanism/deep learning/Yellow River's main stream

分类

水利科学

引用本文复制引用

罗赟,张翔宇,董增川,李强坤,左其亭,韩金旭,周康军..基于物理机制耦合深度学习的黄河干流流量演进模拟[J].水科学进展,2025,36(2):217-229,13.

基金项目

国家重点研发计划项目(2023YFC3206701 ()

2024YFC3211304) The study is financially supported by the National Key R&D Program of China(No.2023YFC3206701 ()

No.2024YFC3211304). ()

水科学进展

OA北大核心

1001-6791

访问量0
|
下载量0
段落导航相关论文