应用于相机标定的亚像素棋盘角点检测OA
Subpixel checkerboard corner detection for camera calibration
在相机标定过程中,棋盘角点检测精度对于确保标定结果的准确性至关重要.针对当前棋盘角点检测方法在精度方面的不足,提出一种新型的亚像素级棋盘角点检测技术.首先,采用U-Net卷积神经网络作为主干网络,根据相机捕获的棋盘图像构建角点热图.此外,为了缩小编码器特征和解码器特征之间的语义差距,创新性地引入了通道和空间双交叉注意模块.接着,通过高斯曲面拟合方法,计算出精确的亚像素棋盘角点坐标.实验结果表明,该方法能够有效提高角点检测的精度,并在相机标定任务中实现了更低的重投影误差.
In the camera calibration process,the accuracy of chessboard corner detection is crucial for ensuring the precision of calibration results.Addressing the insufficient accuracy of current chessboard corner detection methods,this study proposes a no-vel sub-pixel level chessboard corner detection technique.Firstly,the U-Net convolutional neural network is employed as the backbone network to construct corner heatmaps based on the captured chessboard images.In addition,in order to reduce the se-mantic gap between encoder and decoder features,this research innovatively introduces a channel and spatial dual-cross attention module.Subsequently,precise sub-pixel chessboard corner coordinates are calculated using a Gaussian surface fitting method.Experimental results demonstrate that this method effectively improves the accuracy of corner detection and achieves lower repro-jection error in camera calibration tasks.
陈泽勇;吴丽君;李乙
福州大学 物理与信息工程学院,福建 福州 350108福州大学 物理与信息工程学院,福建 福州 350108福州大学 先进制造学院,福建 福州 350108
计算机与自动化
相机标定角点检测通道和空间交叉注意力卷积神经网络
camera calibrationcorner detectionchannel and spatial cross-attentionconvolutional neural network
《网络安全与数据治理》 2025 (4)
46-51,6
国家自然科学基金(62271151,W2421092)
评论