| 注册
首页|期刊导航|铀矿冶|基于不同机器学习算法的地浸测井数据岩性识别对比

基于不同机器学习算法的地浸测井数据岩性识别对比

邹玉涵 李沁慈 阙为民 黄亮 吴童盼 杜志明 姜振蛟 陈炫沂

铀矿冶2025,Vol.44Issue(2):9-17,37,10.
铀矿冶2025,Vol.44Issue(2):9-17,37,10.DOI:10.13426/j.cnki.yky.2024.10.09

基于不同机器学习算法的地浸测井数据岩性识别对比

Lithology Identification Comparison on Geophysical Logging Data of In-situ Leaching Uranium Based on Multiple Machine Learning Algorithms

邹玉涵 1李沁慈 2阙为民 2黄亮 3吴童盼 4杜志明 2姜振蛟 3陈炫沂3

作者信息

  • 1. 核工业北京化工冶金研究院,北京 101149
  • 2. 核工业北京化工冶金研究院,北京 101149||中核矿业科技集团有限公司,北京 101149
  • 3. 吉林大学地下水资源与环境教育部重点实验室,吉林长春 130015
  • 4. 南华大学资源环境与安全工程学院,湖南衡阳 421001
  • 折叠

摘要

Abstract

Machine learning algorithms can automatically learn and extract features from a large amount of ge-ological data to achieve fast and accurate lithology identification.In this paper,the logging data of several wells in a sandstone-type uranium deposit in Inner Mongolia were randomly divided into training sets and veri-fication sets according to the ratio of 7∶2.The model structure was adjusted and the hyperparameters were optimized for training.BC1401,BC2802,BC4603 and BC7206 well were used for testing to realize the com-parative analysis of 5 kinds of models,such as random forest,XGBoost,K value proximity algorithm,BP neural network and SMOTE-LSTM algorithm.The results show that SMOTE-LSTM model has the most superior stability and accuracy,with an accuracy of 84.6%.

关键词

地浸采铀/机器学习/砂岩型铀矿/岩性识别/测井数据/SMOTE-LSTM模型/XGBoost模型

Key words

in-situ leaching of uranium/machine learning/sandstone-type uranium deposit/lithology identification/logging data/SMOTE-LSTM model/XGBoost model

分类

矿业与冶金

引用本文复制引用

邹玉涵,李沁慈,阙为民,黄亮,吴童盼,杜志明,姜振蛟,陈炫沂..基于不同机器学习算法的地浸测井数据岩性识别对比[J].铀矿冶,2025,44(2):9-17,37,10.

基金项目

中核集团青年英才项目(A101-8,基于地浸钻孔数据的采区多源信息智能化提取研究). (A101-8,基于地浸钻孔数据的采区多源信息智能化提取研究)

铀矿冶

1000-8063

访问量0
|
下载量0
段落导航相关论文