| 注册
首页|期刊导航|铀矿冶|物理信息神经网络在地下水铀迁移对流-弥散方程中的应用

物理信息神经网络在地下水铀迁移对流-弥散方程中的应用

张喆安 彭智婷 白云龙 刘龙成

铀矿冶2025,Vol.44Issue(2):29-37,9.
铀矿冶2025,Vol.44Issue(2):29-37,9.DOI:10.13426/j.cnki.yky.2024.09.09

物理信息神经网络在地下水铀迁移对流-弥散方程中的应用

Application of Physics-Informed Neural Networks in Solving the Advection-Diffusion Equation of Uranium Migration in Groundwater

张喆安 1彭智婷 1白云龙 1刘龙成1

作者信息

  • 1. 核工业北京化工冶金研究院,北京 101149
  • 折叠

摘要

Abstract

In the in-situ leaching of uranium,uranium migration is influenced by both groundwater flow and solute diffusion,and this process can be effectively modeled using the advection-diffusion e-quation.Accurately modeling the variation of uranium concentration over time and space is crucial for predicting uranium migration in groundwater during in-situ leaching of uranium.Traditional numerical methods,such as the finite difference method,are computationally intensive and prone to errors while dealing with high-dimensional,complex problems.Therefore,this research aims to explore the appli-cability and accuracy of physics-informed neural networks(PINN)in solving the advection-diffusion e-quation.Through numerical simulations of the one-dimensional advection-diffusion equation,and by comparing the PINN solutions with numerical and analytical solutions.The results show that PINN provide higher accuracy and better alignment with the analytical solution over long-term simulations compared to numerical methods.Furthermore,PINN exhibit certain extrapolation capabilities.Addi-tionally,the introduction of dropout enhances the generalization ability and convergence speed of the PINN model,confirming the potential of PINN in solving complex physical problems.

关键词

原地浸出采铀/铀迁移/对流-弥散方程/物理信息神经网络/有限差分数值模拟

Key words

in-situ leaching of uranium/uranium migration/advection-diffusion equation/physics-in-formed neural network/finite difference numerical simulation

分类

天文与地球科学

引用本文复制引用

张喆安,彭智婷,白云龙,刘龙成..物理信息神经网络在地下水铀迁移对流-弥散方程中的应用[J].铀矿冶,2025,44(2):29-37,9.

基金项目

中核集团基础研究项目(CNNC-JCYJ-202333,电驱动强化CO2+O2地浸机理研究). (CNNC-JCYJ-202333,电驱动强化CO2+O2地浸机理研究)

铀矿冶

1000-8063

访问量0
|
下载量0
段落导航相关论文